You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

328 lines
13 KiB

4 months ago
import asyncio
import logging
4 months ago
import time
4 months ago
import uuid
4 months ago
from contextlib import asynccontextmanager
4 months ago
4 months ago
from fastapi import FastAPI, Form, HTTPException, Query
4 months ago
from openai import AsyncOpenAI
from WxMini.Milvus.Config.MulvusConfig import *
4 months ago
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
4 months ago
from WxMini.Utils.OssUtil import upload_mp3_to_oss_from_memory
from WxMini.Utils.TtsUtil import TTS
4 months ago
from WxMini.Utils.MySQLUtil import init_mysql_pool, save_chat_to_mysql, get_chat_log_by_session, update_risk, \
4 months ago
get_risk_chat_log_page, get_last_chat_log_id, get_user_by_login_name
4 months ago
from WxMini.Utils.EmbeddingUtil import text_to_embedding
4 months ago
4 months ago
# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
4 months ago
# 初始化 Milvus 连接池
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
# 初始化集合管理器
collection_name = MS_COLLECTION_NAME
collection_manager = MilvusCollectionManager(collection_name)
4 months ago
4 months ago
# 使用 Lifespan Events 处理应用启动和关闭逻辑
@asynccontextmanager
async def lifespan(app: FastAPI):
# 应用启动时加载集合到内存
collection_manager.load_collection()
4 months ago
logger.info(f"集合 '{collection_name}' 已加载到内存。")
4 months ago
# 初始化 MySQL 连接池
app.state.mysql_pool = await init_mysql_pool()
logger.info("MySQL 连接池已初始化。")
4 months ago
yield
# 应用关闭时释放连接池
milvus_pool.close()
4 months ago
app.state.mysql_pool.close()
await app.state.mysql_pool.wait_closed()
logger.info("Milvus 和 MySQL 连接池已关闭。")
4 months ago
4 months ago
4 months ago
# 会话结束后,调用检查方法,判断是不是有需要介入的问题出现
4 months ago
async def on_session_end(person_id):
4 months ago
# 获取最后一条聊天记录
4 months ago
last_id = await get_last_chat_log_id(app.state.mysql_pool, person_id)
4 months ago
if last_id:
# 查询最后一条记录的详细信息
async with app.state.mysql_pool.acquire() as conn:
async with conn.cursor() as cur:
await cur.execute(
"SELECT user_input, model_response FROM t_chat_log WHERE id = %s",
(last_id,)
)
last_record = await cur.fetchone()
if last_record:
# 拼接历史聊天记录
4 months ago
history = f"问题:{last_record[0]}\n回答:{last_record[1]}"
4 months ago
else:
history = "无聊天记录"
else:
history = "无聊天记录"
4 months ago
# 将历史聊天记录发给大模型,让它帮我分析一下
prompt = (
"我将把用户与AI大模型交流的记录发给你帮我分析一下这个用户是否存在心理健康方面的问题"
"参考1、PHQ-9抑郁症筛查量表和2、Beck自杀意念评量表BSI-CV"
"如果没有健康问题请回复: OK否则回复NO换行后再输出是什么问题。"
f"\n\n历史聊天记录:{history}"
)
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个心理健康分析助手,负责分析用户的心理健康状况。"},
{"role": "user", "content": prompt}
],
max_tokens=1000
)
# 处理分析结果
if response.choices and response.choices[0].message.content:
analysis_result = response.choices[0].message.content.strip()
if analysis_result.startswith("NO"):
4 months ago
# 异步执行 update_risk
4 months ago
asyncio.create_task(update_risk(app.state.mysql_pool, person_id, analysis_result))
logger.info(f"已异步更新 person_id={person_id} 的风险状态。")
4 months ago
else:
4 months ago
logger.info(f"AI大模型没有发现任何心理健康问题用户会话 {person_id} 没有风险。")
4 months ago
4 months ago
# 初始化 FastAPI 应用
4 months ago
app = FastAPI(lifespan=lifespan)
4 months ago
4 months ago
# 初始化异步 OpenAI 客户端
client = AsyncOpenAI(
4 months ago
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
4 months ago
4 months ago
4 months ago
@app.post("/aichat/reply")
4 months ago
async def reply(person_id: str = Form(...), prompt: str = Form(...)):
4 months ago
"""
接收用户输入的 prompt调用大模型并返回结果
4 months ago
:param person_id: 用户会话 ID
4 months ago
:param prompt: 用户输入的 prompt
:return: 大模型的回复
"""
try:
4 months ago
logger.info(f"收到用户输入: {prompt}")
4 months ago
# 从连接池中获取一个连接
connection = milvus_pool.get_connection()
# 将用户输入转换为嵌入向量
current_embedding = text_to_embedding(prompt)
# 查询与当前对话最相关的历史交互
search_params = {
"metric_type": "L2", # 使用 L2 距离度量方式
"params": {"nprobe": MS_NPROBE} # 设置 IVF_FLAT 的 nprobe 参数
}
start_time = time.time()
4 months ago
results = await asyncio.to_thread( # 将阻塞操作放到线程池中执行
collection_manager.search,
4 months ago
data=current_embedding, # 输入向量
search_params=search_params, # 搜索参数
4 months ago
expr=f"person_id == '{person_id}'", # 按 person_id 过滤
4 months ago
limit=5 # 返回 5 条结果
)
end_time = time.time()
# 构建历史交互提示词
history_prompt = ""
if results:
for hits in results:
for hit in hits:
try:
# 查询非向量字段
4 months ago
record = await asyncio.to_thread(collection_manager.query_by_id, hit.id)
4 months ago
if record:
4 months ago
logger.info(f"查询到的记录: {record}")
4 months ago
# 添加历史交互
history_prompt += f"用户: {record['user_input']}\n大模型: {record['model_response']}\n"
except Exception as e:
4 months ago
logger.error(f"查询失败: {e}")
4 months ago
4 months ago
# 限制历史交互提示词长度
history_prompt = history_prompt[:2000]
4 months ago
logger.info(f"历史交互提示词: {history_prompt}")
4 months ago
# 调用大模型,将历史交互作为提示词
4 months ago
try:
response = await asyncio.wait_for(
client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system",
4 months ago
"content": "你是一个私人助理,负责回答用户的问题。请根据用户的历史对话和当前问题,提供准确且简洁的回答。不要提及你是通义千问或其他无关信息,也不可以回复与本次用户问题不相关的历史对话记录内容,回复内容不要超过90字。"},
4 months ago
{"role": "user", "content": f"历史对话记录:{history_prompt},本次用户问题: {prompt}"}
],
4 months ago
max_tokens=100
4 months ago
),
timeout=60 # 设置超时时间为 60 秒
)
except asyncio.TimeoutError:
logger.error("大模型调用超时")
raise HTTPException(status_code=500, detail="大模型调用超时")
4 months ago
# 提取生成的回复
if response.choices and response.choices[0].message.content:
result = response.choices[0].message.content.strip()
4 months ago
logger.info(f"大模型回复: {result}")
4 months ago
# 记录用户输入和大模型反馈到向量数据库
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
entities = [
4 months ago
[person_id], # person_id
4 months ago
[prompt[:500]], # user_input截断到 500 字符
[result[:500]], # model_response截断到 500 字符
4 months ago
[timestamp], # timestamp
[current_embedding] # embedding
]
4 months ago
if len(prompt) > 500:
logger.warning(f"用户输入被截断,原始长度: {len(prompt)}")
if len(result) > 500:
logger.warning(f"大模型回复被截断,原始长度: {len(result)}")
4 months ago
await asyncio.to_thread(collection_manager.insert_data, entities)
logger.info("用户输入和大模型反馈已记录到向量数据库。")
4 months ago
# 调用 TTS 生成 MP3
4 months ago
uuid_str = str(uuid.uuid4())
4 months ago
timestamp = int(time.time())
tts_file = f"audio/{uuid_str}_{timestamp}.mp3"
# 生成 TTS 音频数据(不落盘)
t = TTS(None) # 传入 None 表示不保存到本地文件
4 months ago
audio_data, duration = await asyncio.to_thread(t.generate_audio,
result) # 假设 TTS 类有一个 generate_audio 方法返回音频数据
4 months ago
print(f"音频时长: {duration}")
4 months ago
# 将音频数据直接上传到 OSS
4 months ago
await asyncio.to_thread(upload_mp3_to_oss_from_memory, tts_file, audio_data)
4 months ago
logger.info(f"TTS 文件已直接上传到 OSS: {tts_file}")
4 months ago
# 完整的 URL
4 months ago
url = OSS_PREFIX + tts_file
4 months ago
# 记录聊天数据到 MySQL
4 months ago
await save_chat_to_mysql(app.state.mysql_pool, person_id, prompt, result, url, duration)
4 months ago
logger.info("用户输入和大模型反馈已记录到 MySQL 数据库。")
4 months ago
# 调用会话检查机制
4 months ago
await on_session_end(person_id)
4 months ago
# 返回数据
4 months ago
return {
"success": True,
"url": url,
"search_time": end_time - start_time, # 返回查询耗时
4 months ago
"duration": duration, # 返回大模型的回复时长
4 months ago
"response": result # 返回大模型的回复
}
4 months ago
else:
raise HTTPException(status_code=500, detail="大模型未返回有效结果")
except Exception as e:
4 months ago
logger.error(f"调用大模型失败: {str(e)}")
4 months ago
raise HTTPException(status_code=500, detail=f"调用大模型失败: {str(e)}")
4 months ago
finally:
# 释放连接
milvus_pool.release_connection(connection)
4 months ago
4 months ago
4 months ago
# 获取聊天记录
4 months ago
from fastapi import Query
4 months ago
4 months ago
# 登录接口
@app.post("/aichat/login")
async def login(
login_name: str = Form(..., description="用户名"),
password: str = Form(..., description="密码")
):
"""
用户登录接口
:param login_name: 用户名
:param password: 密码
:return: 登录结果
"""
if not login_name or not password:
raise HTTPException(status_code=400, detail="用户名和密码不能为空")
# 调用 get_user_by_login_name 方法
user = await get_user_by_login_name(app.state.mysql_pool, login_name)
if not user:
raise HTTPException(status_code=404, detail="用户不存在")
if user['password'] != password:
raise HTTPException(status_code=401, detail="密码错误")
# 返回带字段名称的数据
return {
"code": 200,
"message": "登录成功",
"data": {
"person_id": user["person_id"],
"login_name": user["login_name"],
"identity_id": user["identity_id"],
"person_name": user["person_name"],
"xb_name": user["xb_name"],
"city_name": user["city_name"],
"area_name": user["area_name"],
"school_name": user["school_name"],
"grade_name": user["grade_name"],
"class_name": user["class_name"]
}
}
4 months ago
# 获取聊天记录
4 months ago
@app.get("/aichat/get_chat_log")
4 months ago
async def get_chat_log(
4 months ago
person_id: str,
4 months ago
page: int = Query(default=1, ge=1, description="当前页码(默认值为 1但会动态计算为最后一页"),
4 months ago
page_size: int = Query(default=10, ge=1, le=100, description="每页记录数")
4 months ago
):
"""
4 months ago
获取指定会话的聊天记录默认返回最新的记录最后一页
4 months ago
:param person_id: 用户会话 ID
4 months ago
:param page: 当前页码默认值为 1但会动态计算为最后一页
4 months ago
:param page_size: 每页记录数
:return: 分页数据
"""
4 months ago
# 调用 get_chat_log_by_session 方法
4 months ago
result = await get_chat_log_by_session(app.state.mysql_pool, person_id, page, page_size)
4 months ago
return result
4 months ago
4 months ago
@app.get("/aichat/get_risk_page")
async def get_risk_page(
risk_flag: int = Query(default=1, ge=1, description="1有风险0无风险2:有风险但已处理"),
page: int = Query(default=1, ge=1, description="当前页码"),
page_size: int = Query(default=10, ge=1, le=100, description="每页记录数")
):
"""
查询有风险的聊天记录并按 id 降序分页
:param page: 当前页码
:param page_size: 每页记录数
:return: 分页数据
"""
try:
result = await get_risk_chat_log_page(app.state.mysql_pool, risk_flag, page, page_size)
return result
except Exception as e:
logger.error(f"查询有风险的聊天记录失败: {str(e)}")
raise HTTPException(status_code=500, detail=f"查询有风险的聊天记录失败: {str(e)}")
4 months ago
# 运行 FastAPI 应用
if __name__ == "__main__":
import uvicorn
4 months ago
uvicorn.run("Start:app", host="0.0.0.0", port=5600, workers=1)