You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

109 lines
3.5 KiB

5 months ago
import asyncio
5 months ago
import json
5 months ago
import socket
5 months ago
from typing import AsyncGenerator
5 months ago
from openai import OpenAI
# 阿里云中用来调用 deepseek v3 的密钥
MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
MODEL_NAME = "deepseek-v3"
5 months ago
#MODEL_NAME = "qwen-plus"
5 months ago
# 初始化 OpenAI 客户端
client = OpenAI(
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
# 获取本机所有 IPv4 地址
def get_local_ips():
ips = []
hostname = socket.gethostname()
try:
# 获取所有 IP 地址
addrs = socket.getaddrinfo(hostname, None, family=socket.AF_INET) # 只获取 IPv4 地址
for addr in addrs:
ip = addr[4][0]
if ip not in ips:
ips.append(ip)
except Exception as e:
print(f"获取 IP 地址失败: {e}")
return ips
# 流式生成数据的函数
async def generate_stream_markdown(course_name: str):
# 调用阿里云 API启用流式响应
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{'role': 'system', 'content': '你是一个教学经验丰富的基础教育教师'},
{'role': 'user', 'content': '帮我设计一下' + course_name + '的课件提纲用markdown格式返回。不要返回 ```markdown 或者 ``` 这样的内容!'}
],
stream=True, # 启用流式响应
timeout=6000,
)
# 逐字返回数据
for chunk in stream:
if chunk.choices[0].delta.content:
for char in chunk.choices[0].delta.content:
yield char.encode("utf-8")
await asyncio.sleep(0.05) # 控制逐字输出的速度
def generate_prompt(source: str) -> str:
# 打开 prompt.txt 文件,读取内容
with open("prompt.txt", "r", encoding="utf-8") as file:
prompt = file.read()
prompt = prompt.replace("{{source}}", source)
return prompt
5 months ago
async def convert_markdown_to_json(source: str) -> AsyncGenerator[bytes, None]:
5 months ago
# 生成提示词
prompt = generate_prompt(source)
# 调用 AI 模型,启用流式响应
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个专业的 Markdown 内容解析器。"},
{"role": "user", "content": prompt}
],
stream=True, # 启用流式响应
max_tokens=2000,
temperature=0.5
)
5 months ago
# 缓存当前内容
buffer = ""
# 将同步的 Stream 转换为异步迭代器
async def async_iter_stream():
for chunk in stream:
yield chunk
# 逐块处理流式数据
async for chunk in async_iter_stream():
5 months ago
if chunk.choices[0].delta.content:
5 months ago
# 将新内容添加到缓冲区
buffer += chunk.choices[0].delta.content
# 检查是否有换行符(\n 或 \r
while "\n" in buffer or "\r" in buffer:
# 找到第一个换行符的位置
newline_index = buffer.find("\n") if "\n" in buffer else buffer.find("\r")
# 提取并返回完整的一行
line = buffer[:newline_index]
if line: # 确保 line 不为空
yield line.encode("utf-8")
# 移除已处理的部分
buffer = buffer[newline_index + 1:]
# 返回缓冲区中剩余的内容(最后一行)
if buffer:
yield buffer.encode("utf-8")