You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

192 lines
7.3 KiB

5 months ago
from fastapi import FastAPI, Query, Body
5 months ago
from fastapi.responses import StreamingResponse, PlainTextResponse
5 months ago
from fastapi.middleware.cors import CORSMiddleware
5 months ago
import socket
from openai import OpenAI
5 months ago
import asyncio
5 months ago
import json
5 months ago
app = FastAPI()
5 months ago
# 添加 CORS 中间件
app.add_middleware(
CORSMiddleware,
5 months ago
allow_origins=["*"],
5 months ago
allow_credentials=True,
5 months ago
allow_methods=["*"],
allow_headers=["*"],
5 months ago
)
5 months ago
# 阿里云中用来调用 deepseek v3 的密钥
5 months ago
MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
MODEL_NAME = "deepseek-v3"
# 初始化 OpenAI 客户端
client = OpenAI(
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
# 获取本机所有 IPv4 地址
def get_local_ips():
ips = []
hostname = socket.gethostname()
try:
# 获取所有 IP 地址
addrs = socket.getaddrinfo(hostname, None, family=socket.AF_INET) # 只获取 IPv4 地址
for addr in addrs:
ip = addr[4][0]
if ip not in ips:
ips.append(ip)
except Exception as e:
print(f"获取 IP 地址失败: {e}")
return ips
5 months ago
# 解析 Markdown 内容并生成 JSON 数据
def parse_markdown_to_json(content: str):
sections = []
current_section = None
current_subsection = None
for line in content.split("\n"):
# 忽略无用的标记
if line.strip() in ["```markdown", "```"]:
continue
if line.startswith("# "): # 一级标题(忽略,作为整体标题)
continue
elif line.startswith("## "): # 二级标题
if current_section:
sections.append(current_section)
current_section = {"title": line[3:].strip(), "items": []}
current_subsection = None
elif line.startswith("### "): # 三级标题
if current_section:
current_subsection = {"title": line[4:].strip(), "text": ""}
current_section["items"].append(current_subsection)
elif line.strip() and (line.startswith("- ") or (line[0].isdigit() and line[1] == '.')): # 列表项或数字加点
if not current_subsection: # 如果 current_subsection 为 None则创建一个默认子章节
current_subsection = {"title": "", "text": ""}
if current_section:
current_section["items"].append(current_subsection)
current_subsection["text"] += line.strip() + " "
elif line.strip(): # 普通文本
if current_subsection:
current_subsection["text"] += line.strip() + " "
if current_section:
sections.append(current_section)
return sections
# 生成流式 JSON 数据(中文输出,逐行返回)
# 根路由,返回提示信息
@app.get("/")
def root():
return PlainTextResponse("Hello ApiStream")
# 流式返回数据(支持 GET 和 POST 方法)
@app.api_route("/api/tools/aippt_outline", methods=["GET", "POST"])
async def aippt_outline(
course_name: str = Query(None, description="课程名称GET 方法使用)"), # 从查询参数中获取 course_name
course_name_body: str = Body(None, embed=True, description="课程名称POST 方法使用)") # 从请求体中获取 course_name
):
# 检查 course_name 是否为空
if not course_name and not course_name_body:
return PlainTextResponse("请提供课程名称,例course_name=三角形面积")
# 优先使用 POST 请求体中的 course_name
course_name = course_name_body if course_name_body else course_name
# 返回流式响应
return StreamingResponse(
generate_stream(course_name),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no"
}
)
5 months ago
# 流式生成数据的函数
async def generate_stream(course_name: str):
# 调用阿里云 API启用流式响应
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{'role': 'system', 'content': '你是一个教学经验丰富的基础教育教师'},
5 months ago
{'role': 'user', 'content': '帮我设计一下' + course_name + '的课件提纲用markdown格式返回。不要返回 ```markdown 或者 ``` 这样的内容!'}
5 months ago
],
stream=True, # 启用流式响应
timeout=6000,
)
# 逐字返回数据
for chunk in stream:
if chunk.choices[0].delta.content:
for char in chunk.choices[0].delta.content:
yield char.encode("utf-8")
5 months ago
await asyncio.sleep(0.05) # 控制逐字输出的速度
5 months ago
5 months ago
# 生成流式 JSON 数据(中文输出,逐行返回)
async def generate_json_stream(content: str): # 新增 content 参数
# 解析 Markdown 内容
sections = parse_markdown_to_json(content)
5 months ago
5 months ago
# 封面(使用第一个章节的标题作为封面标题)
first_section_title = sections[0]["title"] if sections else "默认标题"
yield json.dumps({"type": "cover", "data": {"title": first_section_title, "text": "课程简介"}}, ensure_ascii=False) + "\n"
await asyncio.sleep(0.5)
5 months ago
5 months ago
# 目录(使用所有章节的标题)
yield json.dumps({"type": "contents", "data": {"items": [section["title"] for section in sections]}}, ensure_ascii=False) + "\n"
await asyncio.sleep(0.5)
5 months ago
5 months ago
# 逐章节生成内容
for section in sections:
# 过渡(使用章节标题动态生成过渡文本)
yield json.dumps({"type": "transition", "data": {"title": section["title"], "text": section["title"]}}, ensure_ascii=False) + "\n"
await asyncio.sleep(0.5)
# 具体内容(直接使用解析后的章节内容)
yield json.dumps({"type": "content", "data": {"title": section["title"], "items": section["items"]}}, ensure_ascii=False) + "\n"
await asyncio.sleep(0.5)
# 结束
yield json.dumps({"type": "end"}, ensure_ascii=False) + "\n"
# 从文件中读取 Markdown 并生成流式 JSON中文输出逐行返回
@app.get("/api/tools/aippt")
async def aippt(content: str = Query(..., description="Markdown 内容")): # 新增 content 参数
5 months ago
return StreamingResponse(
5 months ago
generate_json_stream(content), # 传入 content
media_type="text/plain", # 使用 text/plain 格式
5 months ago
headers={
5 months ago
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no",
"Content-Type": "text/plain; charset=utf-8" # 明确设置 Content-Type
5 months ago
}
)
# 运行应用
if __name__ == "__main__":
import uvicorn
# 获取本机所有 IPv4 地址
ips = get_local_ips()
if not ips:
print("无法获取本机 IP 地址,使用默认地址 127.0.0.1")
ips = ["127.0.0.1"]
# 打印所有 IP 地址
print("服务将在以下 IP 地址上运行:")
for ip in ips:
5 months ago
print(f"http://{ip}:5173")
5 months ago
# 启动 FastAPI 应用,绑定到所有 IP 地址
5 months ago
uvicorn.run(app, host="0.0.0.0", port=5173)