You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

288 lines
11 KiB

5 months ago
# -*- coding: utf-8 -*-
import re
import hashlib
from py2neo import Graph
from openai import OpenAI
from Config import *
class KnowledgeGraph:
def __init__(self, content: str):
self.content = content
self.question_id = hashlib.md5(content.encode()).hexdigest()[:8]
self.graph = Graph(NEO4J_URI, auth=NEO4J_AUTH)
self.knowledge_points = self._get_knowledge_points()
self.client = OpenAI(api_key=MODEL_API_KEY, base_url=MODEL_API_URL)
5 months ago
# self.knowledge_points = self._get_knowledge_points()
5 months ago
print("加载知识点数量:", len(self.knowledge_points)) # 添加调试信息
5 months ago
def _get_knowledge_points(self) -> dict:
5 months ago
"""保持ID原始大小写"""
5 months ago
try:
5 months ago
# 移除lower()转换
return {row['n.id']: row['n.name'] # 直接使用原始ID
5 months ago
for row in self.graph.run("MATCH (n:KnowledgePoint) RETURN n.id, n.name")}
except Exception as e:
print(f"获取知识点失败:", str(e))
return {}
def _make_prompt(self) -> str:
"""生成知识点识别专用提示词"""
example_ids = list(self.knowledge_points.keys())[:5]
example_names = [self.knowledge_points[k] for k in example_ids]
return f"""你是一个数学专家,请分析题目考查的知识点,严格:
1. 只使用以下存在的知识点格式ID:名称
{", ".join([f"{k}:{v}" for k, v in zip(example_ids, example_names)])}...
{len(self.knowledge_points)}个可用知识点
5 months ago
2. 题目可能包含多个知识点让仔细检查
3. 按此格式生成Cypher
5 months ago
MERGE (q:Question {{id: "{self.question_id}"}})
SET q.content = "题目内容"
WITH q
MATCH (kp:KnowledgePoint {{id: "知识点ID"}})
MERGE (q)-[:TESTS_KNOWLEDGE]->(kp)"""
def _clean_cypher(self, code: str) -> str:
5 months ago
"""完整Cypher清洗逻辑增强版"""
5 months ago
safe = []
5 months ago
content_keywords = {
'行程问题': ['相遇', '相向而行', '追及', '速度', '路程'],
'几何问题': ['面积', '体积', '周长', '三角形', '长方体'],
'分数运算': ['分数', '百分比', '%', '分之']
}
try:
# 提取代码块
cypher_block = re.findall(r"```(?:cypher)?\n(.*?)```", code, re.DOTALL)
if not cypher_block:
print("未检测到Cypher代码块")
return ""
# 预处理配置
valid_ids_upper = [k.upper() for k in self.knowledge_points.keys()]
detected_types = []
raw_lines = cypher_block[0].split('\n')
has_question = False
# === 第一步:基础清洗 ===
for line in raw_lines:
# 清理注释和空白
clean_line = line.split('//')[0].strip()
if not clean_line:
continue
# 阻止CREATE操作
if 'CREATE' in clean_line.upper():
print(f"阻止CREATE操作: {clean_line}")
continue
# 强制Question节点在最前面
if 'MERGE (q:Question' in clean_line:
has_question = True
safe.insert(0, clean_line)
continue
safe.append(clean_line)
# === 第二步:检测题目类型 ===
for pattern, keys in content_keywords.items():
if any(k in self.content for k in keys):
detected_types.append(pattern)
print(f"检测到题目类型: {pattern}")
5 months ago
5 months ago
# === 第三步处理知识点ID ===
knowledge_lines = []
for line in safe.copy():
if 'MATCH (kp:KnowledgePoint' in line:
# 安全提取ID
match = re.search(r"id: ['\"](.*?)['\"]", line)
if not match:
print(f"无效的MATCH语句: {line}")
safe.remove(line)
continue
original_id = match.group(1)
5 months ago
upper_id = original_id.upper()
5 months ago
5 months ago
# 验证ID存在性
5 months ago
if upper_id not in valid_ids_upper:
print(f"忽略无效知识点ID: {original_id}")
5 months ago
safe.remove(line)
5 months ago
continue
5 months ago
5 months ago
# 替换为正确的大写ID
new_line = line.replace(original_id, upper_id)
safe[safe.index(line)] = new_line
knowledge_lines.append(new_line)
# === 第四步:自动补充知识点 ===
for dtype in detected_types:
# 安全获取已关联知识点ID
extracted_ids = []
for line in knowledge_lines:
try:
match = re.search(r"id: ['\"](.*?)['\"]", line)
if match:
kp_id = match.group(1).upper()
extracted_ids.append(kp_id)
except AttributeError:
continue
# 获取对应的知识点名称(确保为字符串)
type_exists = any(
dtype in str(self.knowledge_points.get(kp_id, ''))
for kp_id in extracted_ids
)
if not type_exists:
# 查找匹配的知识点(添加空值过滤)
candidates = [
(k, v) for k, v in self.knowledge_points.items()
if v and dtype in str(v) # 确保v是字符串
and k.upper() in valid_ids_upper
]
5 months ago
5 months ago
# 按名称匹配度排序
candidates.sort(key=lambda x: (
dtype in x[1], # 优先完全匹配
-len(x[1]) # 次优先名称长度短的
), reverse=True)
5 months ago
5 months ago
if candidates:
target_id, target_name = candidates[0]
print(f"补充知识点: {target_id} - {target_name}")
safe.extend([
"WITH q",
f"MATCH (kp:KnowledgePoint {{id: \"{target_id.upper()}\"}})",
"MERGE (q)-[:TESTS_KNOWLEDGE]->(kp)"
])
else:
print(f"未找到匹配的{dtype}知识点")
5 months ago
5 months ago
# === 第五步:语法修正 ===
# 确保Question节点后紧跟WITH
if has_question:
for i, line in enumerate(safe):
if 'MERGE (q:Question' in line:
# 检查下一条是否是WITH
if i + 1 >= len(safe) or not safe[i + 1].startswith('WITH'):
safe.insert(i + 1, "WITH q")
break
5 months ago
5 months ago
# 移除重复的WITH语句
final_safe = []
prev_was_with = False
for line in safe:
if line.startswith('WITH'):
if not prev_was_with:
final_safe.append(line)
prev_was_with = True
else:
final_safe.append(line)
prev_was_with = False
return '\n'.join(final_safe)
except Exception as e:
print(f"清洗Cypher时发生错误: {str(e)}")
return ""
5 months ago
def run(self) -> str:
"""执行知识点关联流程"""
try:
response = self.client.chat.completions.create(
model=MODEL_NAME,
messages=[
{
"role": "system",
"content": self._make_prompt()
},
{
"role": "user",
"content": f"题目内容:{self.content}\n请分析考查的知识点只返回Cypher代码"
}
]
)
raw_cypher = response.choices[0].message.content
cleaned_cypher = self._clean_cypher(raw_cypher)
if cleaned_cypher:
print("验证通过的Cypher\n", cleaned_cypher)
return cleaned_cypher
return ""
except Exception as e:
print("知识点分析失败:", str(e))
return ""
5 months ago
def query_related_knowledge(self):
"""查询题目关联的知识点"""
cypher = f"""
MATCH (q:Question {{id: "{self.question_id}"}})-[:TESTS_KNOWLEDGE]->(kp)
RETURN kp.id AS knowledge_id, kp.name AS knowledge_name
"""
try:
result = self.graph.run(cypher).data()
if result:
print(f"题目关联的知识点({self.question_id}")
for row in result:
print(f"- {row['knowledge_name']} (ID: {row['knowledge_id']})")
else:
print("该题目尚未关联知识点")
return result
except Exception as e:
print("查询失败:", str(e))
return []
5 months ago
5 months ago
# 切割试题
def split_questions(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 使用正则表达式匹配题目块(包含答案)
pattern = r'(\d+\.\s+【.*?】.*?(?=\n\d+\.|\Z))'
questions = re.findall(pattern, content, re.DOTALL)
# 清洗每个题目块的空白字符
cleaned_questions = [q.strip() for q in questions]
return cleaned_questions[:10] # 确保只返回前10题
5 months ago
# 测试用例
if __name__ == '__main__':
5 months ago
# 分段读入题目
question_blocks = split_questions('Backup/ShiTi.md')
# 验证分割结果
for i, block in enumerate(question_blocks, 1):
print(f"{i}题块:")
print("-" * 50)
kg = KnowledgeGraph(block)
cypher = kg.run()
if cypher:
# 插入数据
kg.graph.run(cypher)
print("执行成功!关联知识点:")
kg.query_related_knowledge() # 新增查询
else:
print("未生成有效Cypher")
5 months ago
5 months ago
'''
# 基本可视化查询
MATCH path=(q:Question {id: "07ece550"})-[:TESTS_KNOWLEDGE]->(kp)
RETURN path
# 带样式的可视化
MATCH (q:Question {id: "07ece550"})-[:TESTS_KNOWLEDGE]->(kp)
RETURN q, kp
// 在浏览器中点击左侧样式图标设置
// - Question节点颜色橙色
// - KnowledgePoint节点颜色蓝色
// - 关系线宽3px
'''