You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
9.3 KiB

5 months ago
# -*- coding: utf-8 -*-
5 months ago
"""
数学题目分析系统 v5.0离线可用版
功能特性
1. 本地规则引擎为主 + 大模型增强可选
2. 自动Neo4j数据清洗
3. 完善的错误处理
4. 详细的运行日志
"""
5 months ago
import hashlib
5 months ago
import json
import re
from typing import Dict, List
import jieba
import requests
5 months ago
from py2neo import Graph
from Config import *
5 months ago
# 初始化分词器
jieba.initialize()
5 months ago
5 months ago
5 months ago
# ================== 配置区 ==================
class Config:
LLM_ENABLED = True # 设置为True启用大模型
LLM_TIMEOUT = 10
# 系统参数
MAX_CONTENT_LENGTH = 500
5 months ago
5 months ago
# ================== 知识库模块 ==================
class LocalKnowledgeBase:
"""本地知识规则库"""
RULES = {
'arithmetic': {
'name': '四则运算',
'keywords': ['', '', '', '还剩', '单价', '总价'],
'knowledge': ['四则运算应用(购物问题)'],
'literacy': ['数感培养']
},
'travel': {
'name': '行程问题',
'keywords': ['相遇', '速度', '距离', '时间', '出发'],
'knowledge': ['相遇问题解决方案'],
'literacy': ['空间观念']
},
'work': {
'name': '工程问题',
'keywords': ['合作', '效率', '工期', '完成', '单独'],
'knowledge': ['工程合作效率计算'],
'literacy': ['模型思想']
},
'geometry': {
'name': '几何问题',
'keywords': ['面积', '周长', '体积', '平方', '立方'],
'knowledge': ['几何图形面积计算'],
'literacy': ['空间观念']
},
'ratio': {
'name': '比例问题',
'keywords': ['百分比', '浓度', '稀释', '配比'],
'knowledge': ['浓度问题配比计算'],
'literacy': ['数据分析']
}
}
5 months ago
5 months ago
@classmethod
def analyze(cls, content: str) -> dict:
"""本地规则分析"""
result = {
'problem_types': [],
'knowledge_points': [],
'literacy_points': []
}
words = set(jieba.cut(content))
for ptype, config in cls.RULES.items():
matches = words & set(config['keywords'])
if len(matches) >= 2:
result['problem_types'].append(ptype)
result['knowledge_points'].extend(config['knowledge'])
result['literacy_points'].extend(config['literacy'])
return result
5 months ago
5 months ago
5 months ago
# ================== 大模型模块 ==================
class LLMClient:
"""大模型服务客户端(可选)"""
def __init__(self):
self.enabled = Config.LLM_ENABLED
self.base_url = MODEL_API_URL
self.headers = {
"Authorization": f"Bearer {MODEL_API_KEY}",
"Content-Type": "application/json"
}
def analyze_problem(self, content: str) -> dict:
"""大模型分析(可选增强)"""
if not self.enabled:
return {}
5 months ago
5 months ago
try:
5 months ago
payload = {
"model": MODEL_NAME,
"messages": [{
"role": "user",
"content": f"分析数学题目:{content}"
}],
"temperature": 0.3,
"max_tokens": 300
}
response = requests.post(
f"{self.base_url}/chat/completions",
headers=self.headers,
json=payload,
timeout=Config.LLM_TIMEOUT
)
response.raise_for_status()
return self._parse_response(response.json())
5 months ago
except Exception as e:
5 months ago
print(f"⚠️ 大模型分析失败: {str(e)}")
5 months ago
return {}
5 months ago
def _parse_response(self, data: dict) -> dict:
"""解析大模型响应"""
5 months ago
try:
5 months ago
content = data['choices'][0]['message']['content']
return json.loads(content)
except:
5 months ago
return {}
5 months ago
5 months ago
# ================== 知识图谱模块 ==================
class KnowledgeManager:
"""知识图谱管理器"""
def __init__(self):
self.graph = Graph(NEO4J_URI, auth=NEO4J_AUTH)
self._clean_data()
self.knowledge_map = self._load_knowledge()
self.literacy_map = self._load_literacy()
def _clean_data(self):
"""数据清洗"""
self.graph.run("""
MATCH (n)
WHERE n.name CONTAINS '测试' OR n.id IS NULL
DETACH DELETE n
""")
def _load_knowledge(self) -> Dict[str, str]:
"""加载知识点"""
result = self.graph.run("MATCH (n:KnowledgePoint) RETURN n.id, n.name")
return {rec['n.id']: rec['n.name'] for rec in result}
def _load_literacy(self) -> Dict[str, str]:
"""加载素养点"""
result = self.graph.run("MATCH (n:LiteracyNode) RETURN n.value, n.title")
return {rec['n.value']: rec['n.title'] for rec in result}
def store_analysis(self, question_id: str, content: str,
knowledge: List[str], literacy: List[str]):
"""存储分析结果"""
5 months ago
try:
5 months ago
# 创建题目节点
self.graph.run(
f"MERGE (q:Question {{id: '{question_id}', content: '{content}'}})"
5 months ago
)
5 months ago
# 关联知识点
for kp_name in knowledge:
kp_id = next((k for k, v in self.knowledge_map.items() if v == kp_name), None)
if kp_id:
self.graph.run(f"""
MERGE (kp:KnowledgePoint {{id: '{kp_id}'}})
WITH q, kp
MATCH (q:Question {{id: '{question_id}'}})
MERGE (q)-[:REQUIRES_KNOWLEDGE]->(kp)
""")
# 关联素养点
for lit_name in literacy:
lit_id = next((k for k, v in self.literacy_map.items() if v == lit_name), None)
if lit_id:
self.graph.run(f"""
MERGE (lp:LiteracyNode {{value: '{lit_id}'}})
WITH q, lp
MATCH (q:Question {{id: '{question_id}'}})
MERGE (q)-[:DEVELOPS_LITERACY]->(lp)
""")
5 months ago
except Exception as e:
5 months ago
print(f"❌ 存储失败: {str(e)}")
# ================== 核心逻辑模块 ==================
class ProblemAnalyzer:
"""题目分析引擎"""
def __init__(self, content: str):
self.original = content
self.content = self._preprocess(content)
self.question_id = hashlib.sha256(content.encode()).hexdigest()[:12]
self.kg = KnowledgeManager()
self.llm = LLMClient()
def _preprocess(self, text: str) -> str:
"""文本预处理"""
return re.sub(r'[^\w\u4e00-\u9fa5]', '', text)[:Config.MAX_CONTENT_LENGTH]
def analyze(self) -> dict:
"""执行分析流程"""
# 本地规则分析
local_result = LocalKnowledgeBase.analyze(self.content)
# 大模型增强分析
llm_result = self.llm.analyze_problem(self.original)
# 结果融合
return {
"problem_id": self.question_id,
"problem_types": list(set(
local_result.get('problem_types', []) +
llm_result.get('problem_types', [])
))[:3],
"knowledge_points": list(set(
local_result.get('knowledge_points', []) +
llm_result.get('knowledge_points', [])
))[:2],
"literacy_points": list(set(
local_result.get('literacy_points', []) +
llm_result.get('literacy_points', [])
))[:2]
}
def execute(self):
"""执行完整流程"""
print(f"\n🔍 开始分析题目:{self.original[:50]}...")
analysis = self.analyze()
print("\n📊 分析报告:")
print(f" 题型识别:{analysis.get('problem_types', [])}")
print(f" 推荐知识点:{analysis.get('knowledge_points', [])}")
print(f" 关联素养点:{analysis.get('literacy_points', [])}")
# 存储到知识图谱
self.kg.store_analysis(
question_id=analysis['problem_id'],
content=self.content,
knowledge=analysis.get('knowledge_points', []),
literacy=analysis.get('literacy_points', [])
)
print("✅ 数据存储完成")
# ================== 测试用例 ==================
5 months ago
if __name__ == '__main__':
5 months ago
test_cases = [
"小明用50元买了3本笔记本每本8元还剩多少钱",
"甲乙两车相距300公里甲车速度60km/h乙车40km/h几小时后相遇",
"一项工程甲队单独做需要10天乙队需要15天两队合作需要多少天",
"一个长方形长8cm宽5cm求面积和周长",
"含盐20%的盐水500克要配成15%的盐水,需加水多少克?"
]
for question in test_cases:
print("\n" + "=" * 80)
analyzer = ProblemAnalyzer(question)
analyzer.execute()