You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

698 lines
27 KiB

4 months ago
import asyncio
4 months ago
import base64
import datetime
import json
4 months ago
import logging
import uuid
4 months ago
from contextlib import asynccontextmanager
4 months ago
from datetime import datetime, timedelta
from typing import Optional
4 months ago
from alibabacloud_sts20150401 import models as sts_20150401_models
from alibabacloud_sts20150401.client import Client as Sts20150401Client
from alibabacloud_tea_openapi.models import Config
4 months ago
from fastapi import Query, Depends, HTTPException, status, Form, FastAPI
from fastapi.security import OAuth2PasswordBearer
from jose import JWTError, jwt
from passlib.context import CryptContext
4 months ago
from starlette.responses import StreamingResponse
4 months ago
4 months ago
from WxMini.Milvus.Config.MulvusConfig import *
4 months ago
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
4 months ago
from WxMini.Utils.EmbeddingUtil import text_to_embedding
4 months ago
from WxMini.Utils.ImageUtil import *
from WxMini.Utils.MySQLUtil import init_mysql_pool, get_chat_log_by_session, get_user_by_login_name, \
4 months ago
get_chat_logs_by_risk_flag, get_chat_logs_summary
4 months ago
from WxMini.Utils.MySQLUtil import update_risk, get_last_chat_log_id
4 months ago
from WxMini.Utils.OssUtil import upload_mp3_to_oss_from_memory, hmacsha256
4 months ago
from WxMini.Utils.TianQiUtil import get_weather
4 months ago
from WxMini.Utils.TtsUtil import TTS
4 months ago
4 months ago
# 配置日志
4 months ago
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
4 months ago
logger = logging.getLogger(__name__)
4 months ago
# 密码加密上下文
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
# OAuth2 密码模式
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
4 months ago
# 初始化 Milvus 连接池
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
# 初始化集合管理器
collection_name = MS_COLLECTION_NAME
collection_manager = MilvusCollectionManager(collection_name)
4 months ago
4 months ago
# 使用 Lifespan Events 处理应用启动和关闭逻辑
@asynccontextmanager
async def lifespan(app: FastAPI):
# 应用启动时加载集合到内存
collection_manager.load_collection()
4 months ago
logger.info(f"集合 '{collection_name}' 已加载到内存。")
4 months ago
# 初始化 MySQL 连接池
app.state.mysql_pool = await init_mysql_pool()
logger.info("MySQL 连接池已初始化。")
4 months ago
yield
# 应用关闭时释放连接池
milvus_pool.close()
4 months ago
app.state.mysql_pool.close()
await app.state.mysql_pool.wait_closed()
logger.info("Milvus 和 MySQL 连接池已关闭。")
4 months ago
4 months ago
4 months ago
# 会话结束后,调用检查方法,判断是不是有需要介入的问题出现
4 months ago
async def on_session_end(person_id):
4 months ago
# 获取最后一条聊天记录
4 months ago
last_id = await get_last_chat_log_id(app.state.mysql_pool, person_id)
4 months ago
if last_id:
# 查询最后一条记录的详细信息
async with app.state.mysql_pool.acquire() as conn:
async with conn.cursor() as cur:
await cur.execute(
"SELECT user_input, model_response FROM t_chat_log WHERE id = %s",
(last_id,)
)
last_record = await cur.fetchone()
if last_record:
4 months ago
history = f"问题:{last_record[0]}\n回答:{last_record[1]}"
4 months ago
else:
history = "无聊天记录"
else:
history = "无聊天记录"
4 months ago
# 将历史聊天记录发给大模型,让它帮我分析一下
4 months ago
with open("Input.txt", "r", encoding="utf-8") as file:
input_word = file.read()
4 months ago
prompt = (
4 months ago
"分析用户是否存在心理健康方面的问题:"
4 months ago
f"参考分类文档内容如下:{input_word},注意:只有情节比较严重的才认为有健康问题,轻微的不算。"
4 months ago
"如果没有健康问题请回复: OK否则回复NO换行后输出问题类型的名称"
f"\n\n聊天记录:{history}"
4 months ago
)
4 months ago
# 使用 asyncio.create_task 异步执行大模型调用
async def analyze_mental_health():
response = await client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个心理健康分析助手,负责分析用户的心理健康状况。"},
{"role": "user", "content": prompt}
],
max_tokens=1000
)
# 处理分析结果
if response.choices and response.choices[0].message.content:
analysis_result = response.choices[0].message.content.strip()
if analysis_result.startswith("NO"):
# 异步执行 update_risk
await update_risk(app.state.mysql_pool, person_id, analysis_result)
logger.info(f"已异步更新 person_id={person_id} 的风险状态。")
else:
logger.info(f"AI大模型没有发现任何心理健康问题用户会话 {person_id} 没有风险。")
# 创建异步任务
asyncio.create_task(analyze_mental_health())
4 months ago
4 months ago
# 初始化 FastAPI 应用
4 months ago
app = FastAPI(lifespan=lifespan)
4 months ago
4 months ago
# 初始化异步 OpenAI 客户端
client = AsyncOpenAI(
4 months ago
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
4 months ago
4 months ago
# 验证密码
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
# 创建 JWT
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
to_encode = data.copy()
if expires_delta:
expire = datetime.utcnow() + expires_delta
else:
expire = datetime.utcnow() + timedelta(minutes=15)
to_encode.update({"exp": expire})
4 months ago
encoded_jwt = jwt.encode(to_encode, JWT_SECRET_KEY, algorithm=ALGORITHM)
4 months ago
return encoded_jwt
# 获取当前用户
async def get_current_user(token: str = Depends(oauth2_scheme)):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="无法验证凭证",
headers={"WWW-Authenticate": "Bearer"},
)
try:
4 months ago
payload = jwt.decode(token, JWT_SECRET_KEY, algorithms=[ALGORITHM])
4 months ago
login_name: str = payload.get("sub")
if login_name is None:
raise credentials_exception
except JWTError:
raise credentials_exception
user = await get_user_by_login_name(app.state.mysql_pool, login_name)
if user is None:
raise credentials_exception
return user
4 months ago
# 登录接口
@app.post("/aichat/login")
async def login(
login_name: str = Form(..., description="用户名"),
password: str = Form(..., description="密码")
):
"""
用户登录接口
:param login_name: 用户名
:param password: 密码
:return: 登录结果
"""
flag = True
if not login_name or not password:
flag = False
# 调用 get_user_by_login_name 方法
user = await get_user_by_login_name(app.state.mysql_pool, login_name)
if not user:
flag = False
if user and user['password'] != password:
flag = False
if not flag:
return {
"code": 200,
"message": "登录失败",
"success": False
}
4 months ago
# 生成 JWT
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_access_token(
data={"sub": user["login_name"]}, expires_delta=access_token_expires
)
4 months ago
# 返回带字段名称的数据
return {
"message": "登录成功",
"success": True,
"data": {
"person_id": user["person_id"],
"login_name": user["login_name"],
"identity_id": user["identity_id"],
"person_name": user["person_name"],
"xb_name": user["xb_name"],
"city_name": user["city_name"],
"area_name": user["area_name"],
"school_name": user["school_name"],
"grade_name": user["grade_name"],
4 months ago
"class_name": user["class_name"],
"access_token": access_token,
"token_type": "bearer"
4 months ago
}
}
4 months ago
4 months ago
# 与用户交流聊天
4 months ago
@app.post("/aichat/reply")
4 months ago
async def reply(person_id: str = Form(...),
prompt: str = Form(...),
current_user: dict = Depends(get_current_user)
):
4 months ago
"""
接收用户输入的 prompt调用大模型并返回结果
4 months ago
:param person_id: 用户会话 ID
4 months ago
:param prompt: 用户输入的 prompt
:return: 大模型的回复
"""
try:
4 months ago
logger.info(f"收到用户输入: {prompt}")
4 months ago
if not prompt:
return {
"code": 200,
"message": "请输入内容",
"success": False
}
4 months ago
# 从连接池中获取一个连接
connection = milvus_pool.get_connection()
# 将用户输入转换为嵌入向量
current_embedding = text_to_embedding(prompt)
# 查询与当前对话最相关的历史交互
search_params = {
"metric_type": "L2", # 使用 L2 距离度量方式
"params": {"nprobe": MS_NPROBE} # 设置 IVF_FLAT 的 nprobe 参数
}
start_time = time.time()
4 months ago
results = await asyncio.to_thread( # 将阻塞操作放到线程池中执行
collection_manager.search,
4 months ago
data=current_embedding, # 输入向量
search_params=search_params, # 搜索参数
4 months ago
expr=f"person_id == '{person_id}'", # 按 person_id 过滤
4 months ago
limit=6 # 返回 6 条结果
4 months ago
)
end_time = time.time()
# 构建历史交互提示词
history_prompt = ""
if results:
for hits in results:
for hit in hits:
try:
# 查询非向量字段
4 months ago
record = await asyncio.to_thread(collection_manager.query_by_id, hit.id)
4 months ago
if record:
4 months ago
# logger.info(f"查询到的记录: {record}")
4 months ago
# 添加历史交互
history_prompt += f"用户: {record['user_input']}\n大模型: {record['model_response']}\n"
except Exception as e:
4 months ago
logger.error(f"查询失败: {e}")
4 months ago
4 months ago
# 在最后增加此人最近几条的交互记录数据
4 months ago
try:
recent_logs = await get_chat_log_by_session(app.state.mysql_pool, person_id)
data = recent_logs["data"]
for record in data:
history_prompt += f"用户: {record['user_input']}\n大模型: {record['model_response']}\n"
except Exception as e:
logger.error(f"获取交互记录时出错:{e}")
4 months ago
4 months ago
# 限制历史交互提示词长度
4 months ago
history_prompt = history_prompt[:3000]
4 months ago
# 拼接交互提示词
if '天气' in prompt or '降温' in prompt or '气温' in prompt or '下雨' in prompt or '下雪' in prompt or '' in prompt:
weather_info = await get_weather('长春')
history_prompt += f"天气信息: {weather_info}\n"
4 months ago
logger.info(f"历史交互提示词: {history_prompt}")
4 months ago
# 调用大模型,将历史交互作为提示词
4 months ago
try:
response = await asyncio.wait_for(
client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system",
4 months ago
"content": "你是一个和你聊天人的好朋友,疏导情绪,让他开心,亲切一些,不要使用哎呀这样的语气词。聊天的回复内容不要超过100字。"},
4 months ago
{"role": "user", "content": f"历史对话记录:{history_prompt},本次用户问题: {prompt}"}
],
4 months ago
max_tokens=4000
4 months ago
),
timeout=60 # 设置超时时间为 60 秒
)
except asyncio.TimeoutError:
logger.error("大模型调用超时")
raise HTTPException(status_code=500, detail="大模型调用超时")
4 months ago
# 提取生成的回复
if response.choices and response.choices[0].message.content:
result = response.choices[0].message.content.strip()
4 months ago
logger.info(f"大模型回复: {result}")
4 months ago
# 记录用户输入和大模型反馈到向量数据库
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
entities = [
4 months ago
[person_id], # person_id
4 months ago
[prompt[:500]], # user_input截断到 500 字符
[result[:500]], # model_response截断到 500 字符
4 months ago
[timestamp], # timestamp
[current_embedding] # embedding
]
4 months ago
if len(prompt) > 500:
logger.warning(f"用户输入被截断,原始长度: {len(prompt)}")
if len(result) > 500:
logger.warning(f"大模型回复被截断,原始长度: {len(result)}")
4 months ago
await asyncio.to_thread(collection_manager.insert_data, entities)
4 months ago
logger.info("用户输入和大模型反馈已记录到向量数据库。")
4 months ago
# 调用 TTS 生成 MP3
4 months ago
uuid_str = str(uuid.uuid4())
4 months ago
timestamp = int(time.time())
4 months ago
# 生成年月日的目录名称
4 months ago
audio_dir = f"audio/{time.strftime('%Y%m%d', time.localtime())}"
tts_file = f"{audio_dir}/{uuid_str}_{timestamp}.mp3"
4 months ago
# 生成 TTS 音频数据(不落盘)
t = TTS(None) # 传入 None 表示不保存到本地文件
4 months ago
audio_data, duration = await asyncio.to_thread(t.generate_audio,
result) # 假设 TTS 类有一个 generate_audio 方法返回音频数据
4 months ago
# print(f"音频时长: {duration} 秒")
4 months ago
# 将音频数据直接上传到 OSS
4 months ago
await asyncio.to_thread(upload_mp3_to_oss_from_memory, tts_file, audio_data)
4 months ago
logger.info(f"TTS 文件已直接上传到 OSS: {tts_file}")
4 months ago
# 完整的 URL
4 months ago
url = OSS_PREFIX + tts_file
4 months ago
# 记录聊天数据到 MySQL
4 months ago
await save_chat_to_mysql(app.state.mysql_pool, person_id, prompt, result, url, duration)
4 months ago
# logger.info("用户输入和大模型反馈已记录到 MySQL 数据库。")
4 months ago
4 months ago
# 调用会话检查机制,异步执行
asyncio.create_task(on_session_end(person_id))
4 months ago
# 返回数据
4 months ago
return {
"success": True,
"url": url,
"search_time": end_time - start_time, # 返回查询耗时
4 months ago
"duration": duration, # 返回大模型的回复时长
4 months ago
"response": result, # 返回大模型的回复
"login_name": current_user["login_name"],
"person_name": current_user["person_name"]
4 months ago
}
4 months ago
else:
raise HTTPException(status_code=500, detail="大模型未返回有效结果")
except Exception as e:
4 months ago
logger.error(f"调用大模型失败: {str(e)}")
4 months ago
raise HTTPException(status_code=500, detail=f"调用大模型失败: {str(e)}")
4 months ago
finally:
# 释放连接
milvus_pool.release_connection(connection)
4 months ago
4 months ago
# 获取聊天记录
4 months ago
@app.get("/aichat/get_chat_log")
4 months ago
async def get_chat_log(
4 months ago
person_id: str,
4 months ago
page: int = Query(default=1, ge=1, description="当前页码"),
4 months ago
page_size: int = Query(default=10, ge=1, le=100, description="每页记录数"),
current_user: dict = Depends(get_current_user)
4 months ago
):
"""
4 months ago
获取指定会话的聊天记录默认返回最新的记录最后一页
4 months ago
:param person_id: 用户会话 ID
4 months ago
:param page: 当前页码默认值为 1但会动态计算为最后一页
4 months ago
:param page_size: 每页记录数
:return: 分页数据
"""
4 months ago
logger.info(f"current_user={current_user['login_name']}")
4 months ago
# 调用 get_chat_log_by_session 方法
4 months ago
result = await get_chat_log_by_session(app.state.mysql_pool, person_id, page, page_size)
4 months ago
return result
4 months ago
4 months ago
4 months ago
# 获取风险聊天记录接口
@app.get("/aichat/get_risk_chat_logs")
async def get_risk_chat_logs(
4 months ago
risk_flag: int = Query(..., description="风险标志1 表示有风险0 表示无风险 ,2:处理完毕)"),
4 months ago
page: int = Query(default=1, ge=1, description="当前页码(默认值为 1"),
4 months ago
page_size: int = Query(default=10, ge=1, le=100, description="每页记录数(默认值为 10最大值为 100"),
4 months ago
person_id: str = Query(..., description="用户会话 ID"),
4 months ago
current_user: dict = Depends(get_current_user)
4 months ago
):
"""
4 months ago
获取聊天记录支持分页和风险标志过滤
:param risk_flag: 风险标志
4 months ago
:param page: 当前页码
:param page_size: 每页记录数
:return: 分页数据
"""
4 months ago
logger.info(f"current_user={current_user['login_name']}")
4 months ago
# 计算分页偏移量
offset = (page - 1) * page_size
# 调用 get_chat_logs_by_risk_flag 方法
4 months ago
logs, total = await get_chat_logs_by_risk_flag(app.state.mysql_pool, risk_flag, person_id, offset, page_size)
4 months ago
if not logs:
4 months ago
return {
"success": False,
"message": "没有找到相关记录",
"data": {
}
}
4 months ago
# 返回分页数据
return {
4 months ago
"success": True,
4 months ago
"message": "查询成功",
"data": {
"total": total,
"page": page,
"page_size": page_size,
4 months ago
"logs": logs
}
}
# 获取风险统计接口
@app.get("/aichat/chat_logs_summary")
async def chat_logs_summary(
risk_flag: int = Query(..., description="风险标志1 表示有风险0 表示无风险 ,2:处理完毕)"),
page: int = Query(default=1, ge=1, description="当前页码(默认值为 1"),
page_size: int = Query(default=10, ge=1, le=100, description="每页记录数(默认值为 10最大值为 100"),
current_user: dict = Depends(get_current_user)
):
"""
获取风险统计接口支持分页和风险标志过滤
:param risk_flag: 风险标志
:param page: 当前页码
:param page_size: 每页记录数
:param current_user: 当前用户信息
:return: 分页数据
"""
# 验证 risk_flag 的值
if risk_flag not in {0, 1, 2}:
raise HTTPException(status_code=400, detail="risk_flag 的值必须是 0、1 或 2")
# 计算分页偏移量
offset = (page - 1) * page_size
# 调用 get_chat_logs_summary 方法
logs, total = await get_chat_logs_summary(app.state.mysql_pool, risk_flag, offset, page_size)
# 如果未找到记录,返回友好提示
if not logs:
return {
"success": True,
"message": "未找到符合条件的记录",
"data": {
"total": 0,
"page": page,
"page_size": page_size,
"total_pages": 0,
"logs": []
}
}
# 计算总页数
total_pages = (total + page_size - 1) // page_size
# 返回分页数据
return {
"success": True,
"message": "查询成功",
"data": {
"total": total,
"page": page,
"page_size": page_size,
"total_pages": total_pages,
4 months ago
"logs": logs,
"login_name": current_user["login_name"],
"person_name": current_user["person_name"]
4 months ago
}
}
4 months ago
4 months ago
4 months ago
# 获取上传OSS的授权Token
4 months ago
@app.get("/aichat/get_post_signature_for_oss_upload")
async def generate_upload_params(current_user: dict = Depends(get_current_user)):
logger.info(f"current_user={current_user['login_name']}")
# 子账号的AK,SK,ARN
access_key_id = "LTAI5tJrhwuBzF2X9USrzubX"
access_key_secret = "I6ezLuYhk9z9MRjXD2q99STSpTONwW"
role_arn_for_oss_upload = "acs:ram::1546399445482588:role/huanghai-create-role"
# 桶名
oss_bucket = 'hzkc'
# 区域
region_id = 'cn-beijing'
host = f'http://{oss_bucket}.oss-cn-beijing.aliyuncs.com'
upload_dir = 'Upload' # 指定上传到OSS的文件前缀。
role_session_name = 'role_session_name' # 自定义会话名称
# 初始化配置,直接传递凭据
config = Config(
region_id=region_id,
access_key_id=access_key_id,
access_key_secret=access_key_secret
)
# 创建 STS 客户端并获取临时凭证
sts_client = Sts20150401Client(config=config)
assume_role_request = sts_20150401_models.AssumeRoleRequest(
role_arn=role_arn_for_oss_upload,
role_session_name=role_session_name
)
response = sts_client.assume_role(assume_role_request)
token_data = response.body.credentials.to_map()
# 使用 STS 返回的临时凭据
sts_access_key_id = token_data['AccessKeyId']
sts_access_key_secret = token_data['AccessKeySecret']
security_token = token_data['SecurityToken']
now = int(time.time())
# 将时间戳转换为datetime对象
4 months ago
dt_obj = datetime.utcfromtimestamp(now)
4 months ago
# 在当前时间增加3小时设置为请求的过期时间
4 months ago
dt_obj_plus_3h = dt_obj + timedelta(hours=1)
4 months ago
# 请求时间
dt_obj_1 = dt_obj.strftime('%Y%m%dT%H%M%S') + 'Z'
# 请求日期
dt_obj_2 = dt_obj.strftime('%Y%m%d')
# 请求过期时间
expiration_time = dt_obj_plus_3h.strftime('%Y-%m-%dT%H:%M:%S.000Z')
# 构建 Policy 并生成签名
policy = {
"expiration": expiration_time,
"conditions": [
["eq", "$success_action_status", "200"],
{"x-oss-signature-version": "OSS4-HMAC-SHA256"},
{"x-oss-credential": f"{sts_access_key_id}/{dt_obj_2}/{region_id}/oss/aliyun_v4_request"},
{"x-oss-security-token": security_token},
{"x-oss-date": dt_obj_1},
]
}
policy_str = json.dumps(policy).strip()
# 步骤2构造待签名字符串StringToSign
stringToSign = base64.b64encode(policy_str.encode()).decode()
# 步骤3计算SigningKey
dateKey = hmacsha256(("aliyun_v4" + sts_access_key_secret).encode(), dt_obj_2)
dateRegionKey = hmacsha256(dateKey, region_id)
dateRegionServiceKey = hmacsha256(dateRegionKey, "oss")
signingKey = hmacsha256(dateRegionServiceKey, "aliyun_v4_request")
# 步骤4计算Signature
result = hmacsha256(signingKey, stringToSign)
signature = result.hex()
# 组织返回数据
response_data = {
'policy': stringToSign, # 表单域
'x_oss_signature_version': "OSS4-HMAC-SHA256", # 指定签名的版本和算法固定值为OSS4-HMAC-SHA256
'x_oss_credential': f"{sts_access_key_id}/{dt_obj_2}/{region_id}/oss/aliyun_v4_request", # 指明派生密钥的参数集
'x_oss_date': dt_obj_1, # 请求的时间
'signature': signature, # 签名认证描述信息
'host': host,
'dir': upload_dir,
'security_token': security_token # 安全令牌
4 months ago
}
4 months ago
return response_data
4 months ago
4 months ago
4 months ago
@app.get("/aichat/recognize_content")
4 months ago
async def web_recognize_content(image_url: str, current_user: dict = Depends(get_current_user)):
logger.info(f"current_user:{current_user['login_name']}")
person_id = current_user['person_id']
4 months ago
try:
4 months ago
async def generate_stream():
# 假设 recognize_content 是一个异步生成器,逐条返回识别结果
async for result in recognize_content(client, app.state.mysql_pool, person_id, image_url):
yield f"{str(result)}" # 使用SSE格式
# 控制输出速度间隔0.01秒
await asyncio.sleep(0.01)
4 months ago
return StreamingResponse(
4 months ago
generate_stream(),
media_type="text/event-stream", # 使用SSE的media_type
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"} # 禁用缓存,保持连接
)
4 months ago
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
4 months ago
@app.get("/aichat/recognize_text")
async def web_recognize_text(image_url: str, current_user: dict = Depends(get_current_user)):
logger.info(f"current_user:{current_user['login_name']}")
4 months ago
person_id = current_user['person_id']
4 months ago
try:
4 months ago
async def generate_stream():
# 假设 recognize_content 是一个异步生成器,逐条返回识别结果
async for result in recognize_text(client, app.state.mysql_pool, person_id, image_url):
yield f"{str(result)}" # 使用SSE格式
# 控制输出速度间隔0.01秒
await asyncio.sleep(0.01)
4 months ago
return StreamingResponse(
4 months ago
generate_stream(),
media_type="text/event-stream", # 使用SSE的media_type
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"} # 禁用缓存,保持连接
)
4 months ago
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/aichat/recognize_math")
4 months ago
async def web_recognize_math(image_url: str, current_user: dict = Depends(get_current_user)):
logger.info(f"current_user:{current_user['login_name']}")
person_id = current_user['person_id']
4 months ago
try:
4 months ago
async def generate_stream():
# 假设 recognize_content 是一个异步生成器,逐条返回识别结果
async for result in recognize_math(client, app.state.mysql_pool, person_id, image_url):
yield f"{str(result)}" # 使用SSE格式
# 控制输出速度间隔0.01秒
await asyncio.sleep(0.01)
4 months ago
return StreamingResponse(
4 months ago
generate_stream(),
media_type="text/event-stream", # 使用SSE的media_type
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"} # 禁用缓存,保持连接
)
4 months ago
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
4 months ago
# 运行 FastAPI 应用
if __name__ == "__main__":
import uvicorn
4 months ago
uvicorn_log_config = {
"version": 1,
4 months ago
"disable_existing_loggers": False,
4 months ago
"formatters": {
"default": {
"()": "uvicorn.logging.DefaultFormatter",
"fmt": "%(asctime)s %(levelprefix)s %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S",
}
},
"handlers": {
"default": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
}
},
"loggers": {
4 months ago
"uvicorn": {"handlers": ["default"], "level": "INFO", "propagate": False},
"uvicorn.access": {"handlers": ["default"], "level": "INFO", "propagate": False},
"uvicorn.error": {"handlers": ["default"], "level": "INFO", "propagate": False},
"uvicorn.asgi": {"handlers": [], "level": "INFO", "propagate": False}, # 禁用 ASGI 日志
4 months ago
},
}
# 强制覆盖Uvicorn的默认配置
uvicorn.run("Start:app", host="0.0.0.0", port=5600, workers=1, log_config=uvicorn_log_config)