You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
17 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<div align="center">
<p>
<img width="100%" src="./docs/images/Banner.png" alt="PaddleOCR Banner"></a>
</p>
<!-- language -->
[中文](./readme_c.md)| English
<!-- icon -->
[![stars](https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf)](https://github.com/PaddlePaddle/PaddleOCR)
[![Downloads](https://img.shields.io/pypi/dm/paddleocr)](https://pypi.org/project/PaddleOCR/)
![python](https://img.shields.io/badge/python-3.83.12-aff.svg)
![os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg)
![hardware](https://img.shields.io/badge/hardware-cpu%2C%20gpu%2C%20xpu%2C%20npu-yellow.svg)
[![Website](https://img.shields.io/badge/Website-PaddleOCR-blue?logo=)](https://www.paddleocr.ai/)
[![AI Studio](https://img.shields.io/badge/PP_OCRv5-AI_Studio-green)](https://aistudio.baidu.com/community/app/91660/webUI)
[![AI Studio](https://img.shields.io/badge/PP_StructureV3-AI_Studio-green)](https://aistudio.baidu.com/community/app/518494/webUI)
[![AI Studio](https://img.shields.io/badge/PP_ChatOCRv4-AI_Studio-green)](https://aistudio.baidu.com/community/app/518493/webUI)
</div>
## 🚀 Introduction
Since its initial release, PaddleOCR has gained widespread acclaim across academia, industry, and research communities, thanks to its cutting-edge algorithms and proven performance in real-world applications. Its already powering popular open-source projects like Umi-OCR, OmniParser, MinerU, and RAGFlow, making it the go-to OCR toolkit for developers worldwide.
On May 20, 2025, the PaddlePaddle team unveiled PaddleOCR 3.0, fully compatible with the official release of the **PaddlePaddle 3.0** framework. This update further **boosts text-recognition accuracy**, adds support for **multiple text-type recognition** and **handwriting recognition**, and meets the growing demand from large-model applications for **high-precision parsing of complex documents**. When combined with the **ERNIE 4.5T**, it significantly enhances key-information extraction accuracy. PaddleOCR 3.0 also introduces support for domestic hardware platforms such as **KUNLUNXIN** and **Ascend**. For the complete usage documentation, please refer to the [PaddleOCR 3.0 Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html).
Three Major New Features in PaddleOCR 3.0:
- Universal-Scene Text Recognition Model [PP-OCRv5](./docs/version3.x/algorithm/PP-OCRv5/PP-OCRv5.en.md): A single model that handles five different text types plus complex handwriting. Overall recognition accuracy has increased by 13 percentage points over the previous generation. [Online Demo](https://aistudio.baidu.com/community/app/91660/webUI)
- General Document-Parsing Solution [PP-StructureV3](./docs/version3.x/algorithm/PP-StructureV3/PP-StructureV3.en.md): Delivers high-precision parsing of multi-layout, multi-scene PDFs, outperforming many open- and closed-source solutions on public benchmarks. [Online Demo](https://aistudio.baidu.com/community/app/518494/webUI)
- Intelligent Document-Understanding Solution [PP-ChatOCRv4](./docs/version3.x/algorithm/PP-ChatOCRv4/PP-ChatOCRv4.en.md): Natively powered by the WenXin large model 4.5T, achieving 15 percentage points higher accuracy than its predecessor. [Online Demo](https://aistudio.baidu.com/community/app/518493/webUI)
In addition to providing an outstanding model library, PaddleOCR 3.0 also offers user-friendly tools covering model training, inference, and service deployment, so developers can rapidly bring AI applications to production.
<div align="center">
<p>
<img width="100%" src="./docs/images/Arch.png" alt="PaddleOCR Architecture"></a>
</p>
</div>
## 📣 Recent updates
#### **🔥🔥 2025.06.05: Release of PaddleOCR 3.0.1, includes:**
- **Optimisation of certain models and model configurations:**
- Updated the default model configuration for PP-OCRv5, changing both detection and recognition from mobile to server models. To improve default performance in most scenarios, the parameter `limit_side_len` in the configuration has been changed from 736 to 64.
- Added a new text line orientation classification model `PP-LCNet_x1_0_textline_ori` with an accuracy of 99.42%. The default text line orientation classifier for OCR, PP-StructureV3, and PP-ChatOCRv4 pipelines has been updated to this model.
- Optimised the text line orientation classification model `PP-LCNet_x0_25_textline_ori`, improving accuracy by 3.3 percentage points to a current accuracy of 98.85%.
- **Optimizations and fixes for some issues in version 3.0.0, [details](https://paddlepaddle.github.io/PaddleOCR/latest/en/update/update.html)**
🔥🔥2025.05.20: Official Release of **PaddleOCR v3.0**, including:
- **PP-OCRv5**: High-Accuracy Text Recognition Model for All Scenarios - Instant Text from Images/PDFs.
1. 🌐 Single-model support for **five** text types - Seamlessly process **Simplified Chinese, Traditional Chinese, Simplified Chinese Pinyin, English** and **Japanse** within a single model.
2. ✍️ Improved **handwriting recognition**: Significantly better at complex cursive scripts and non-standard handwriting.
3. 🎯 **13-point accuracy gain** over PP-OCRv4, achieving state-of-the-art performance across a variety of real-world scenarios.
- **PP-StructureV3**: General-Purpose Document Parsing Unleash SOTA Images/PDFs Parsing for Real-World Scenarios!
1. 🧮 **High-Accuracy multi-scene PDF parsing**, leading both open- and closed-source solutions on the OmniDocBench benchmark.
2. 🧠 Specialized capabilities include **seal recognition**, **chart-to-table conversion**, **table recognition with nested formulas/images**, **vertical text document parsing**, and **complex table structure analysis**.
- **PP-ChatOCRv4**: Intelligent Document Understanding Extract Key Information, not just text from Images/PDFs.
1. 🔥 **15-point accuracy gain** in key-information extraction on PDF/PNG/JPG files over the previous generation.
2. 💻 Native support for **ERINE4.5 Turbo**, with compatibility for large-model deployments via PaddleNLP, Ollama, vLLM, and more.
3. 🤝 Integrated [PP-DocBee2](https://github.com/PaddlePaddle/PaddleMIX/tree/develop/paddlemix/examples/ppdocbee2), enabling extraction and understanding of printed text, handwriting, seals, tables, charts, and other common elements in complex documents.
<details>
<summary><strong>The history of updates </strong></summary>
- 🔥🔥2025.03.07: Release of **PaddleOCR v2.10**, including:
- **12 new self-developed models:**
- **[Layout Detection series](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/layout_detection.html)**(3 models): PP-DocLayout-L, M, and S -- capable of detecting 23 common layout types across diverse document formats(papers, reports, exams, books, magazines, contracts, etc.) in English and Chinese. Achieves up to **90.4% mAP@0.5** , and lightweight features can process over 100 pages per second.
- **[Formula Recognition series](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/formula_recognition.html)**(2 models): PP-FormulaNet-L and S -- supports recognition of 50,000+ LaTeX expressions, handling both printed and handwritten formulas. PP-FormulaNet-L offers **6% higher accuracy** than comparable models; PP-FormulaNet-S is 16x faster while maintaining similar accuracy.
- **[Table Structure Recognition series](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/table_structure_recognition.html)**(2 models): SLANeXt_wired and SLANeXt_wireless -- newly developed models with **6% accuracy improvement** over SLANet_plus in complex table recognition.
- **[Table Classification](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/ocr_modules/table_classification.html)**(1 model):
PP-LCNet_x1_0_table_cls -- an ultra-lightweight classifier for wired and wireless tables.
[Learn more](https://paddlepaddle.github.io/PaddleOCR/latest/en/update.html)
</details>
## ⚡ Quick Start
### 1. Run online demo
[![AI Studio](https://img.shields.io/badge/PP_OCRv5-AI_Studio-green)](https://aistudio.baidu.com/community/app/91660/webUI)
[![AI Studio](https://img.shields.io/badge/PP_StructureV3-AI_Studio-green)](https://aistudio.baidu.com/community/app/518494/webUI)
[![AI Studio](https://img.shields.io/badge/PP_ChatOCRv4-AI_Studio-green)](https://aistudio.baidu.com/community/app/518493/webUI)
### 2. Installation
Install PaddlePaddle refer to [Installation Guide](https://www.paddlepaddle.org.cn/en/install/quick?docurl=/documentation/docs/en/develop/install/pip/linux-pip_en.html), after then, install the PaddleOCR toolkit.
```bash
# Install paddleocr
pip install paddleocr
```
### 3. Run inference by CLI
```bash
# Run PP-OCRv5 inference
paddleocr ocr -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --use_doc_orientation_classify False --use_doc_unwarping False --use_textline_orientation False
# Run PP-StructureV3 inference
paddleocr pp_structurev3 -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png --use_doc_orientation_classify False --use_doc_unwarping False
# Get the Qianfan API Key at first, and then run PP-ChatOCRv4 inference
paddleocr pp_chatocrv4_doc -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png -k 驾驶室准乘人数 --qianfan_api_key your_api_key --use_doc_orientation_classify False --use_doc_unwarping False
# Get more information about "paddleocr ocr"
paddleocr ocr --help
```
### 4. Run inference by API
**4.1 PP-OCRv5 Example**
```python
# Initialize PaddleOCR instance
ocr = PaddleOCR(
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False)
# Run OCR inference on a sample image
result = ocr.predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png")
# Visualize the results and save the JSON results
for res in result:
res.print()
res.save_to_img("output")
res.save_to_json("output")
```
<details>
<summary><strong>4.2 PP-StructureV3 Example</strong></summary>
```python
from pathlib import Path
from paddleocr import PPStructureV3
pipeline = PPStructureV3()
# For Image
output = pipeline.predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pp_structure_v3_demo.png",
use_doc_orientation_classify=False,
use_doc_unwarping=False
)
# Visualize the results and save the JSON results
for res in output:
res.print()
res.save_to_json(save_path="output")
res.save_to_markdown(save_path="output")
```
</details>
<details>
<summary><strong>4.3 PP-ChatOCRv4 Example</strong></summary>
```python
from paddleocr import PPChatOCRv4Doc
chat_bot_config = {
"module_name": "chat_bot",
"model_name": "ernie-3.5-8k",
"base_url": "https://qianfan.baidubce.com/v2",
"api_type": "openai",
"api_key": "api_key", # your api_key
}
retriever_config = {
"module_name": "retriever",
"model_name": "embedding-v1",
"base_url": "https://qianfan.baidubce.com/v2",
"api_type": "qianfan",
"api_key": "api_key", # your api_key
}
pipeline = PPChatOCRv4Doc(
use_doc_orientation_classify=False,
use_doc_unwarping=False
)
visual_predict_res = pipeline.visual_predict(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
use_common_ocr=True,
use_seal_recognition=True,
use_table_recognition=True,
)
mllm_predict_info = None
use_mllm = False
# If a multimodal large model is used, the local mllm service needs to be started. You can refer to the documentation: https://github.com/PaddlePaddle/PaddleX/blob/release/3.0/docs/pipeline_usage/tutorials/vlm_pipelines/doc_understanding.m d performs deployment and updates the mllm_chat_bot_config configuration.
if use_mllm:
mllm_chat_bot_config = {
"module_name": "chat_bot",
"model_name": "PP-DocBee",
"base_url": "http://127.0.0.1:8080/", # your local mllm service url
"api_type": "openai",
"api_key": "api_key", # your api_key
}
mllm_predict_res = pipeline.mllm_pred(
input="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_certificate-1.png",
key_list=["驾驶室准乘人数"],
mllm_chat_bot_config=mllm_chat_bot_config,
)
mllm_predict_info = mllm_predict_res["mllm_res"]
visual_info_list = []
for res in visual_predict_res:
visual_info_list.append(res["visual_info"])
layout_parsing_result = res["layout_parsing_result"]
vector_info = pipeline.build_vector(
visual_info_list, flag_save_bytes_vector=True, retriever_config=retriever_config
)
chat_result = pipeline.chat(
key_list=["驾驶室准乘人数"],
visual_info=visual_info_list,
vector_info=vector_info,
mllm_predict_info=mllm_predict_info,
chat_bot_config=chat_bot_config,
retriever_config=retriever_config,
)
print(chat_result)
```
</details>
### 5. Domestic AI Accelerators
- [Huawei Ascend](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/other_devices_support/paddlepaddle_install_NPU.html)
- [KUNLUNXIN](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/other_devices_support/paddlepaddle_install_XPU.html)
## ⛰️ Advanced Tutorials
- [PP-OCRv5 Tutorial](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/OCR.html)
- [PP-StructureV3 Tutorial](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/PP-StructureV3.html)
- [PP-ChatOCRv4 Tutorial](https://paddlepaddle.github.io/PaddleOCR/latest/version3.x/pipeline_usage/PP-ChatOCRv4.html)
## 🔄 Quick Overview of Execution Results
<div align="center">
<p>
<img width="100%" src="./docs/images/demo.gif" alt="PP-OCRv5 Demo"></a>
</p>
</div>
<div align="center">
<p>
<img width="100%" src="./docs/images/blue_v3.gif" alt="PP-StructureV3 Demo"></a>
</p>
</div>
## 👩‍👩‍👧‍👦 Community
| PaddlePaddle WeChat official account | Join the tech discussion group |
| :---: | :---: |
| <img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/paddleocr/README/qrcode_for_paddlepaddle_official_account.jpg" width="150"> | <img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/paddleocr/README/qr_code_for_the_questionnaire.jpg" width="150"> |
## 😃 Awesome Projects Leveraging PaddleOCR
PaddleOCR wouldnt be where it is today without its incredible community! 💗 A massive thank you to all our longtime partners, new collaborators, and everyone whos poured their passion into PaddleOCR — whether weve named you or not. Your support fuels our fire!
| Project Name | Description |
| ------------ | ----------- |
| [RAGFlow](https://github.com/infiniflow/ragflow) <a href="https://github.com/infiniflow/ragflow"><img src="https://img.shields.io/github/stars/infiniflow/ragflow"></a>|RAG engine based on deep document understanding.|
| [MinerU](https://github.com/opendatalab/MinerU) <a href="https://github.com/opendatalab/MinerU"><img src="https://img.shields.io/github/stars/opendatalab/MinerU"></a>|Multi-type Document to Markdown Conversion Tool|
| [Umi-OCR](https://github.com/hiroi-sora/Umi-OCR) <a href="https://github.com/hiroi-sora/Umi-OCR"><img src="https://img.shields.io/github/stars/hiroi-sora/Umi-OCR"></a>|Free, Open-source, Batch Offline OCR Software.|
| [OmniParser](https://github.com/microsoft/OmniParser)<a href="https://github.com/microsoft/OmniParser"><img src="https://img.shields.io/github/stars/microsoft/OmniParser"></a> |OmniParser: Screen Parsing tool for Pure Vision Based GUI Agent.|
| [QAnything](https://github.com/netease-youdao/QAnything)<a href="https://github.com/netease-youdao/QAnything"><img src="https://img.shields.io/github/stars/netease-youdao/QAnything"></a> |Question and Answer based on Anything.|
| [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit) <a href="https://github.com/opendatalab/PDF-Extract-Kit"><img src="https://img.shields.io/github/stars/opendatalab/PDF-Extract-Kit"></a>|A powerful open-source toolkit designed to efficiently extract high-quality content from complex and diverse PDF documents.|
| [Dango-Translator](https://github.com/PantsuDango/Dango-Translator)<a href="https://github.com/PantsuDango/Dango-Translator"><img src="https://img.shields.io/github/stars/PantsuDango/Dango-Translator"></a> |Recognize text on the screen, translate it and show the translation results in real time.|
| [Learn more projects](./awesome_projects.md) | [More projects based on PaddleOCR](./awesome_projects.md)|
## 👩‍👩‍👧‍👦 Contributors
<a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors">
<img src="https://contrib.rocks/image?repo=PaddlePaddle/PaddleOCR&max=400&columns=20" width="800"/>
</a>
## 🌟 Star
[![Star History Chart](https://api.star-history.com/svg?repos=PaddlePaddle/PaddleOCR&type=Date)](https://star-history.com/#PaddlePaddle/PaddleOCR&Date)
## 📄 License
This project is released under the [Apache 2.0 license](LICENSE).
## 🎓 Citation
```
@misc{paddleocr2020,
title={PaddleOCR, Awesome multilingual OCR toolkits based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleOCR}},
year={2020}
}
```