You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
435 lines
17 KiB
435 lines
17 KiB
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from .._utils.cli import (
|
|
add_simple_inference_args,
|
|
get_subcommand_args,
|
|
perform_simple_inference,
|
|
str2bool,
|
|
)
|
|
from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
|
|
from .utils import create_config_from_structure
|
|
|
|
|
|
class TableRecognitionPipelineV2(PaddleXPipelineWrapper):
|
|
def __init__(
|
|
self,
|
|
layout_detection_model_name=None,
|
|
layout_detection_model_dir=None,
|
|
table_classification_model_name=None,
|
|
table_classification_model_dir=None,
|
|
wired_table_structure_recognition_model_name=None,
|
|
wired_table_structure_recognition_model_dir=None,
|
|
wireless_table_structure_recognition_model_name=None,
|
|
wireless_table_structure_recognition_model_dir=None,
|
|
wired_table_cells_detection_model_name=None,
|
|
wired_table_cells_detection_model_dir=None,
|
|
wireless_table_cells_detection_model_name=None,
|
|
wireless_table_cells_detection_model_dir=None,
|
|
doc_orientation_classify_model_name=None,
|
|
doc_orientation_classify_model_dir=None,
|
|
doc_unwarping_model_name=None,
|
|
doc_unwarping_model_dir=None,
|
|
text_detection_model_name=None,
|
|
text_detection_model_dir=None,
|
|
text_det_limit_side_len=None,
|
|
text_det_limit_type=None,
|
|
text_det_thresh=None,
|
|
text_det_box_thresh=None,
|
|
text_det_unclip_ratio=None,
|
|
text_recognition_model_name=None,
|
|
text_recognition_model_dir=None,
|
|
text_recognition_batch_size=None,
|
|
text_rec_score_thresh=None,
|
|
use_doc_orientation_classify=None,
|
|
use_doc_unwarping=None,
|
|
use_layout_detection=None,
|
|
use_ocr_model=None,
|
|
**kwargs,
|
|
):
|
|
params = locals().copy()
|
|
params.pop("self")
|
|
params.pop("kwargs")
|
|
self._params = params
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
@property
|
|
def _paddlex_pipeline_name(self):
|
|
return "table_recognition_v2"
|
|
|
|
def predict_iter(
|
|
self,
|
|
input,
|
|
use_doc_orientation_classify=None,
|
|
use_doc_unwarping=None,
|
|
use_layout_detection=None,
|
|
use_ocr_model=None,
|
|
overall_ocr_res=None,
|
|
layout_det_res=None,
|
|
text_det_limit_side_len=None,
|
|
text_det_limit_type=None,
|
|
text_det_thresh=None,
|
|
text_det_box_thresh=None,
|
|
text_det_unclip_ratio=None,
|
|
text_rec_score_thresh=None,
|
|
use_e2e_wired_table_rec_model=False,
|
|
use_e2e_wireless_table_rec_model=False,
|
|
use_wired_table_cells_trans_to_html=False,
|
|
use_wireless_table_cells_trans_to_html=False,
|
|
use_table_orientation_classify=True,
|
|
use_ocr_results_with_table_cells=True,
|
|
**kwargs,
|
|
):
|
|
return self.paddlex_pipeline.predict(
|
|
input,
|
|
use_doc_orientation_classify=use_doc_orientation_classify,
|
|
use_doc_unwarping=use_doc_unwarping,
|
|
use_layout_detection=use_layout_detection,
|
|
use_ocr_model=use_ocr_model,
|
|
overall_ocr_res=overall_ocr_res,
|
|
layout_det_res=layout_det_res,
|
|
text_det_limit_side_len=text_det_limit_side_len,
|
|
text_det_limit_type=text_det_limit_type,
|
|
text_det_thresh=text_det_thresh,
|
|
text_det_box_thresh=text_det_box_thresh,
|
|
text_det_unclip_ratio=text_det_unclip_ratio,
|
|
text_rec_score_thresh=text_rec_score_thresh,
|
|
use_e2e_wired_table_rec_model=use_e2e_wired_table_rec_model,
|
|
use_e2e_wireless_table_rec_model=use_e2e_wireless_table_rec_model,
|
|
use_wired_table_cells_trans_to_html=use_wired_table_cells_trans_to_html,
|
|
use_wireless_table_cells_trans_to_html=use_wireless_table_cells_trans_to_html,
|
|
use_table_orientation_classify=use_table_orientation_classify,
|
|
use_ocr_results_with_table_cells=use_ocr_results_with_table_cells,
|
|
**kwargs,
|
|
)
|
|
|
|
def predict(
|
|
self,
|
|
input,
|
|
use_doc_orientation_classify=None,
|
|
use_doc_unwarping=None,
|
|
use_layout_detection=None,
|
|
use_ocr_model=None,
|
|
overall_ocr_res=None,
|
|
layout_det_res=None,
|
|
text_det_limit_side_len=None,
|
|
text_det_limit_type=None,
|
|
text_det_thresh=None,
|
|
text_det_box_thresh=None,
|
|
text_det_unclip_ratio=None,
|
|
text_rec_score_thresh=None,
|
|
use_e2e_wired_table_rec_model=False,
|
|
use_e2e_wireless_table_rec_model=False,
|
|
use_wired_table_cells_trans_to_html=False,
|
|
use_wireless_table_cells_trans_to_html=False,
|
|
use_table_orientation_classify=True,
|
|
use_ocr_results_with_table_cells=True,
|
|
**kwargs,
|
|
):
|
|
return list(
|
|
self.predict_iter(
|
|
input,
|
|
use_doc_orientation_classify=use_doc_orientation_classify,
|
|
use_doc_unwarping=use_doc_unwarping,
|
|
use_layout_detection=use_layout_detection,
|
|
use_ocr_model=use_ocr_model,
|
|
overall_ocr_res=overall_ocr_res,
|
|
layout_det_res=layout_det_res,
|
|
text_det_limit_side_len=text_det_limit_side_len,
|
|
text_det_limit_type=text_det_limit_type,
|
|
text_det_thresh=text_det_thresh,
|
|
text_det_box_thresh=text_det_box_thresh,
|
|
text_det_unclip_ratio=text_det_unclip_ratio,
|
|
text_rec_score_thresh=text_rec_score_thresh,
|
|
use_e2e_wired_table_rec_model=use_e2e_wired_table_rec_model,
|
|
use_e2e_wireless_table_rec_model=use_e2e_wireless_table_rec_model,
|
|
use_wired_table_cells_trans_to_html=use_wired_table_cells_trans_to_html,
|
|
use_wireless_table_cells_trans_to_html=use_wireless_table_cells_trans_to_html,
|
|
use_table_orientation_classify=use_table_orientation_classify,
|
|
use_ocr_results_with_table_cells=use_ocr_results_with_table_cells,
|
|
**kwargs,
|
|
)
|
|
)
|
|
|
|
@classmethod
|
|
def get_cli_subcommand_executor(cls):
|
|
return TableRecognitionPipelineV2CLISubcommandExecutor()
|
|
|
|
def _get_paddlex_config_overrides(self):
|
|
STRUCTURE = {
|
|
"SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[
|
|
"use_doc_orientation_classify"
|
|
],
|
|
"SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[
|
|
"use_doc_unwarping"
|
|
],
|
|
"use_layout_detection": self._params["use_layout_detection"],
|
|
"use_ocr_model": self._params["use_ocr_model"],
|
|
"SubModules.LayoutDetection.model_name": self._params[
|
|
"layout_detection_model_name"
|
|
],
|
|
"SubModules.LayoutDetection.model_dir": self._params[
|
|
"layout_detection_model_dir"
|
|
],
|
|
"SubModules.TableClassification.model_name": self._params[
|
|
"table_classification_model_name"
|
|
],
|
|
"SubModules.TableClassification.model_dir": self._params[
|
|
"table_classification_model_dir"
|
|
],
|
|
"SubModules.WiredTableStructureRecognition.model_name": self._params[
|
|
"wired_table_structure_recognition_model_name"
|
|
],
|
|
"SubModules.WiredTableStructureRecognition.model_dir": self._params[
|
|
"wired_table_structure_recognition_model_dir"
|
|
],
|
|
"SubModules.WirelessTableStructureRecognition.model_name": self._params[
|
|
"wireless_table_structure_recognition_model_name"
|
|
],
|
|
"SubModules.WirelessTableStructureRecognition.model_dir": self._params[
|
|
"wireless_table_structure_recognition_model_dir"
|
|
],
|
|
"SubModules.WiredTableCellsDetection.model_name": self._params[
|
|
"wired_table_cells_detection_model_name"
|
|
],
|
|
"SubModules.WiredTableCellsDetection.model_dir": self._params[
|
|
"wired_table_cells_detection_model_dir"
|
|
],
|
|
"SubModules.WirelessTableCellsDetection.model_name": self._params[
|
|
"wireless_table_cells_detection_model_name"
|
|
],
|
|
"SubModules.WirelessTableCellsDetection.model_dir": self._params[
|
|
"wireless_table_cells_detection_model_dir"
|
|
],
|
|
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[
|
|
"doc_orientation_classify_model_name"
|
|
],
|
|
"SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[
|
|
"doc_orientation_classify_model_dir"
|
|
],
|
|
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[
|
|
"doc_unwarping_model_name"
|
|
],
|
|
"SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[
|
|
"doc_unwarping_model_dir"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.model_name": self._params[
|
|
"text_detection_model_name"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.model_dir": self._params[
|
|
"text_detection_model_dir"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.limit_side_len": self._params[
|
|
"text_det_limit_side_len"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.limit_type": self._params[
|
|
"text_det_limit_type"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.thresh": self._params[
|
|
"text_det_thresh"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.box_thresh": self._params[
|
|
"text_det_box_thresh"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextDetection.unclip_ratio": self._params[
|
|
"text_det_unclip_ratio"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextRecognition.model_name": self._params[
|
|
"text_recognition_model_name"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextRecognition.model_dir": self._params[
|
|
"text_recognition_model_dir"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextRecognition.batch_size": self._params[
|
|
"text_recognition_batch_size"
|
|
],
|
|
"SubPipelines.GeneralOCR.SubModules.TextRecognition.score_thresh": self._params[
|
|
"text_rec_score_thresh"
|
|
],
|
|
}
|
|
return create_config_from_structure(STRUCTURE)
|
|
|
|
|
|
class TableRecognitionPipelineV2CLISubcommandExecutor(PipelineCLISubcommandExecutor):
|
|
@property
|
|
def subparser_name(self):
|
|
return "table_recognition_v2"
|
|
|
|
def _update_subparser(self, subparser):
|
|
add_simple_inference_args(subparser)
|
|
|
|
subparser.add_argument(
|
|
"--layout_detection_model_name",
|
|
type=str,
|
|
help="Name of the layout detection model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--layout_detection_model_dir",
|
|
type=str,
|
|
help="Path to the layout detection model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--table_classification_model_name",
|
|
type=str,
|
|
help="Name of the table classification model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--table_classification_model_dir",
|
|
type=str,
|
|
help="Path to the table classification model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wired_table_structure_recognition_model_name",
|
|
type=str,
|
|
help="Name of the wired table structure recognition model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wired_table_structure_recognition_model_dir",
|
|
type=str,
|
|
help="Path to the wired table structure recognition model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wireless_table_structure_recognition_model_name",
|
|
type=str,
|
|
help="Name of the wireless table structure recognition model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wireless_table_structure_recognition_model_dir",
|
|
type=str,
|
|
help="Path to the wired table structure recognition model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wired_table_cells_detection_model_name",
|
|
type=str,
|
|
help="Name of the wired table cells detection model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wired_table_cells_detection_model_dir",
|
|
type=str,
|
|
help="Path to the wired table cells detection model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wireless_table_cells_detection_model_name",
|
|
type=str,
|
|
help="Name of the wireless table cells detection model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--wireless_table_cells_detection_model_dir",
|
|
type=str,
|
|
help="Path to the wireless table cells detection model directory.",
|
|
)
|
|
|
|
subparser.add_argument(
|
|
"--doc_orientation_classify_model_name",
|
|
type=str,
|
|
help="Name of the document image orientation classification model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--doc_orientation_classify_model_dir",
|
|
type=str,
|
|
help="Path to the document image orientation classification model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--doc_unwarping_model_name",
|
|
type=str,
|
|
help="Name of the text image unwarping model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--doc_unwarping_model_dir",
|
|
type=str,
|
|
help="Path to the image unwarping model directory.",
|
|
)
|
|
|
|
subparser.add_argument(
|
|
"--text_detection_model_name",
|
|
type=str,
|
|
help="Name of the text detection model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_detection_model_dir",
|
|
type=str,
|
|
help="Path to the text detection model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_det_limit_side_len",
|
|
type=int,
|
|
help="This sets a limit on the side length of the input image for the text detection model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_det_limit_type",
|
|
type=str,
|
|
help="This determines how the side length limit is applied to the input image before feeding it into the text deteciton model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_det_thresh",
|
|
type=float,
|
|
help="Detection pixel threshold for the text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_det_box_thresh",
|
|
type=float,
|
|
help="Detection box threshold for the text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_det_unclip_ratio",
|
|
type=float,
|
|
help="Text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_recognition_model_name",
|
|
type=str,
|
|
help="Name of the text recognition model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_recognition_model_dir",
|
|
type=str,
|
|
help="Path to the text recognition model directory.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_recognition_batch_size",
|
|
type=int,
|
|
help="Batch size for the text recognition model.",
|
|
)
|
|
subparser.add_argument(
|
|
"--text_rec_score_thresh",
|
|
type=float,
|
|
help="Text recognition threshold used in general OCR. Text results with scores greater than this threshold are retained.",
|
|
)
|
|
|
|
subparser.add_argument(
|
|
"--use_doc_orientation_classify",
|
|
type=str2bool,
|
|
help="Whether to use document image orientation classification.",
|
|
)
|
|
subparser.add_argument(
|
|
"--use_doc_unwarping",
|
|
type=str2bool,
|
|
help="Whether to use text image unwarping.",
|
|
)
|
|
subparser.add_argument(
|
|
"--use_layout_detection",
|
|
type=str2bool,
|
|
help="Whether to use layout detection.",
|
|
)
|
|
subparser.add_argument(
|
|
"--use_ocr_model",
|
|
type=str2bool,
|
|
help="Whether to use OCR models.",
|
|
)
|
|
|
|
def execute_with_args(self, args):
|
|
params = get_subcommand_args(args)
|
|
perform_simple_inference(TableRecognitionPipelineV2, params)
|