You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

产线并行推理

指定多个推理设备

对于部分产线的 CLI 和 Python APIPaddleOCR 支持同时指定多个推理设备。如果指定了多个设备,产线初始化时将在每个设备上创建一个底层产线类对象的实例,并对接收到的输入进行并行推理。例如,对于文档图像预处理产线:

paddleocr doc_preprocessor \
  --input input_images/ \
  --device 'gpu:0,1,2,3' \
  --use_doc_orientation_classify True \
  --use_doc_unwarping True
  --save_path ./output \

from paddleocr import DocPreprocessor


pipeline = DocPreprocessor(device="gpu:0,1,2,3") 
output = pipeline.predict(    
    input="input_images/",
    use_doc_orientation_classify=True,
    use_doc_unwarping=True)
    

以上两个例子均使用 4 块 GPU编号为 0、1、2、3doc_test_rotated.jpg 图片进行并行推理。

指定多个设备时,推理接口仍然与指定单设备时保持一致。请查看产线使用教程以了解某一产线是否支持指定多个推理设备。

多进程并行推理示例

除了使用 PaddleOCR 内置的多设备并行推理功能外,用户也可以结合实际场景,通过封装 PaddleOCR 产线 API 调用来实现并行处理,从而获得更优的加速效果。如下是使用 Python 多进程实现多卡、多实例并行处理输入目录中的文件的示例代码:

import argparse
import sys
from multiprocessing import Manager, Process
from pathlib import Path
from queue import Empty

import paddleocr


def load_pipeline(class_name: str, device: str):
    if not hasattr(paddleocr, class_name):
        raise ValueError(f"Class {class_name} not found in paddleocr module.")
    cls = getattr(paddleocr, class_name)
    return cls(device=device)


def worker(pipeline_class_path, device, task_queue, batch_size, output_dir):
    pipeline = load_pipeline(pipeline_class_path, device)

    should_end = False
    batch = []

    while not should_end:
        try:
            input_path = task_queue.get_nowait()
        except Empty:
            should_end = True
        else:
            batch.append(input_path)

        if batch and (len(batch) == batch_size or should_end):
            try:
                for result in pipeline.predict(batch):
                    input_path = Path(result["input_path"])
                    if result.get("page_index") is not None:
                        output_path = f"{input_path.stem}_{result['page_index']}.json"
                    else:
                        output_path = f"{input_path.stem}.json"
                    output_path = str(Path(output_dir, output_path))
                    result.save_to_json(output_path)
                    print(f"Processed {repr(str(input_path))}")
            except Exception as e:
                print(
                    f"Error processing {batch} on {repr(device)}: {e}",
                    file=sys.stderr
                )
            batch.clear()


def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--pipeline",
        type=str,
        required=True,
        help="PaddleOCR pipeline, e.g. 'DocPreprocessor'.",
    )
    parser.add_argument(
        "--input_dir", type=str, required=True, help="Input directory."
    )
    parser.add_argument(
        "--device",
        type=str,
        required=True,
        help="Specifies the devices for performing parallel inference.",
    )
    parser.add_argument(
        "--output_dir", type=str, default="output", help="Output directory."
    )
    parser.add_argument(
        "--instances_per_device",
        type=int,
        default=1,
        help="Number of pipeline instances per device.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1,
        help="Inference batch size for each pipeline instance.",
    )
    parser.add_argument(
        "--input_glob_pattern",
        type=str,
        default="*",
        help="Pattern to find the input files.",
    )
    args = parser.parse_args()

    input_dir = Path(args.input_dir)
    if not input_dir.exists():
        print(f"The input directory does not exist: {input_dir}", file=sys.stderr)
        return 2
    if not input_dir.is_dir():
        print(f"{repr(str(input_dir))} is not a directory.", file=sys.stderr)
        return 2

    output_dir = Path(args.output_dir)
    if output_dir.exists() and not output_dir.is_dir():
        print(f"{repr(str(output_dir))} is not a directory.", file=sys.stderr)
        return 2
    output_dir.mkdir(parents=True, exist_ok=True)

    from paddlex.utils.device import constr_device, parse_device

    device_type, device_ids = parse_device(args.device)
    if device_ids is None or len(device_ids) == 1:
        print(
            "Please specify at least two devices for performing parallel inference.",
            file=sys.stderr,
        )
        return 2

    if args.batch_size <= 0:
        print("Batch size must be greater than 0.", file=sys.stderr)
        return 2

    with Manager() as manager:
        task_queue = manager.Queue()
        for img_path in input_dir.glob(args.input_glob_pattern):
            task_queue.put(str(img_path))

        processes = []
        for device_id in device_ids:
            for _ in range(args.instances_per_device):
                device = constr_device(device_type, [device_id])
                p = Process(
                    target=worker,
                    args=(
                        args.pipeline,
                        device,
                        task_queue,
                        args.batch_size,
                        str(output_dir),
                    ),
                )
                p.start()
                processes.append(p)

        for p in processes:
            p.join()

    print("All done")
    return 0


if __name__ == "__main__":
    sys.exit(main())

假设将上述脚本存储为 infer_mp.py,以下是一些调用示例:

# 确定 `--pipeline` 参数需查看其产线 **脚本方式** 导入类名称
# 此处为通用版面解析 v3 产线对应PPStructureV3
# 其余产线例如印章文本产线对应SealRecognition文档理解产线对应DocUnderstanding
# 处理 `input_images` 目录中所有文件
# 使用 GPU 0、1、2、3每块 GPU 上 1 个产线实例,每个实例一次处理 1 个输入文件
python infer_mp.py \
    --pipeline PPStructureV3 \
    --input_dir input_images/ \
    --device 'gpu:0,1,2,3' \
    --output_dir output

# 通用版面解析 v3 产线
# 处理 `input_images` 目录中所有后缀为 `.jpg` 的文件
# 使用 GPU 0、2每块 GPU 上 2 个产线实例,每个实例一次处理 4 个输入文件
python infer_mp.py \
    --pipeline PPStructureV3 \
    --input_dir input_images/ \
    --device 'gpu:0,2' \
    --output_dir output \
    --instances_per_device 2 \
    --batch_size 4 \
    --input_glob_pattern '*.jpg'