You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

120 lines
3.9 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <fstream>
#include <include/postprocess_op.h>
#include <include/preprocess_op.h>
#include <iostream>
#include <memory>
#include <yaml-cpp/yaml.h>
namespace paddle_infer {
class Predictor;
}
namespace PaddleOCR {
class StructureLayoutRecognizer {
public:
explicit StructureLayoutRecognizer(
const std::string &model_dir, const bool &use_gpu, const int &gpu_id,
const int &gpu_mem, const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const std::string &label_path,
const bool &use_tensorrt, const std::string &precision,
const double &layout_score_threshold,
const double &layout_nms_threshold) noexcept {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_tensorrt_ = use_tensorrt;
this->precision_ = precision;
std::string new_label_path = label_path;
std::string yaml_file_path = model_dir + "/inference.yml";
std::ifstream yaml_file(yaml_file_path);
if (yaml_file.is_open()) {
std::string model_name;
std::vector<std::string> rec_char_list;
try {
YAML::Node config = YAML::LoadFile(yaml_file_path);
if (config["Global"] && config["Global"]["model_name"]) {
model_name = config["Global"]["model_name"].as<std::string>();
}
if (!model_name.empty()) {
std::cerr << "Error: " << model_name << " is currently not supported."
<< std::endl;
std::exit(EXIT_FAILURE);
}
if (config["PostProcess"] && config["PostProcess"]["character_dict"]) {
rec_char_list = config["PostProcess"]["character_dict"]
.as<std::vector<std::string>>();
}
} catch (const YAML::Exception &e) {
std::cerr << "Failed to load YAML file: " << e.what() << std::endl;
}
if (label_path == "../../ppocr/utils/ppocr_keys_v1.txt" &&
!rec_char_list.empty()) {
std::string new_rec_char_dict_path = model_dir + "/ppocr_keys.txt";
std::ofstream new_file(new_rec_char_dict_path);
if (new_file.is_open()) {
for (const auto &character : rec_char_list) {
new_file << character << '\n';
}
new_label_path = new_rec_char_dict_path;
}
}
}
this->post_processor_.init(new_label_path, layout_score_threshold,
layout_nms_threshold);
LoadModel(model_dir);
}
// Load Paddle inference model
void LoadModel(const std::string &model_dir) noexcept;
void Run(const cv::Mat &img, std::vector<StructurePredictResult> &result,
std::vector<double> &times) noexcept;
private:
std::shared_ptr<paddle_infer::Predictor> predictor_;
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
std::vector<float> mean_ = {0.485f, 0.456f, 0.406f};
std::vector<float> scale_ = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
bool is_scale_ = true;
bool use_tensorrt_ = false;
std::string precision_ = "fp32";
// pre-process
Resize resize_op_;
Normalize normalize_op_;
Permute permute_op_;
// post-process
PicodetPostProcessor post_processor_;
};
} // namespace PaddleOCR