You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.2 KiB
101 lines
3.2 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <fstream>
|
|
#include <include/preprocess_op.h>
|
|
#include <include/utility.h>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <yaml-cpp/yaml.h>
|
|
|
|
namespace paddle_infer {
|
|
class Predictor;
|
|
}
|
|
|
|
namespace PaddleOCR {
|
|
|
|
class Classifier {
|
|
public:
|
|
explicit Classifier(const std::string &model_dir, const bool &use_gpu,
|
|
const int &gpu_id, const int &gpu_mem,
|
|
const int &cpu_math_library_num_threads,
|
|
const bool &use_mkldnn, const double &cls_thresh,
|
|
const bool &use_tensorrt, const std::string &precision,
|
|
const int &cls_batch_num) noexcept {
|
|
this->use_gpu_ = use_gpu;
|
|
this->gpu_id_ = gpu_id;
|
|
this->gpu_mem_ = gpu_mem;
|
|
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
|
|
this->use_mkldnn_ = use_mkldnn;
|
|
|
|
this->cls_thresh = cls_thresh;
|
|
this->use_tensorrt_ = use_tensorrt;
|
|
this->precision_ = precision;
|
|
this->cls_batch_num_ = cls_batch_num;
|
|
|
|
std::string yaml_file_path = model_dir + "/inference.yml";
|
|
std::ifstream yaml_file(yaml_file_path);
|
|
if (yaml_file.is_open()) {
|
|
std::string model_name;
|
|
try {
|
|
YAML::Node config = YAML::LoadFile(yaml_file_path);
|
|
if (config["Global"] && config["Global"]["model_name"]) {
|
|
model_name = config["Global"]["model_name"].as<std::string>();
|
|
}
|
|
if (!model_name.empty()) {
|
|
std::cerr << "Error: " << model_name << " is currently not supported."
|
|
<< std::endl;
|
|
std::exit(EXIT_FAILURE);
|
|
}
|
|
} catch (const YAML::Exception &e) {
|
|
std::cerr << "Failed to load YAML file: " << e.what() << std::endl;
|
|
}
|
|
}
|
|
|
|
LoadModel(model_dir);
|
|
}
|
|
double cls_thresh = 0.9;
|
|
|
|
// Load Paddle inference model
|
|
void LoadModel(const std::string &model_dir) noexcept;
|
|
|
|
void Run(const std::vector<cv::Mat> &img_list, std::vector<int> &cls_labels,
|
|
std::vector<float> &cls_scores, std::vector<double> ×) noexcept;
|
|
|
|
private:
|
|
std::shared_ptr<paddle_infer::Predictor> predictor_;
|
|
|
|
bool use_gpu_ = false;
|
|
int gpu_id_ = 0;
|
|
int gpu_mem_ = 4000;
|
|
int cpu_math_library_num_threads_ = 4;
|
|
bool use_mkldnn_ = false;
|
|
|
|
std::vector<float> mean_ = {0.5f, 0.5f, 0.5f};
|
|
std::vector<float> scale_ = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
|
|
bool is_scale_ = true;
|
|
bool use_tensorrt_ = false;
|
|
std::string precision_ = "fp32";
|
|
int cls_batch_num_ = 1;
|
|
// pre-process
|
|
ClsResizeImg resize_op_;
|
|
Normalize normalize_op_;
|
|
PermuteBatch permute_op_;
|
|
|
|
}; // class Classifier
|
|
|
|
} // namespace PaddleOCR
|