# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Should we use a third-party CLI library to auto-generate command-line # arguments from the pipeline class, to reduce boilerplate and improve # maintainability? import sys import warnings from .._utils.cli import ( add_simple_inference_args, get_subcommand_args, perform_simple_inference, str2bool, ) from .._utils.deprecation import ( DeprecatedOptionAction, deprecated, warn_deprecated_param, ) from .._utils.logging import logger from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor from .utils import create_config_from_structure _DEPRECATED_PARAM_NAME_MAPPING = { "det_model_dir": "text_detection_model_dir", "det_limit_side_len": "text_det_limit_side_len", "det_limit_type": "text_det_limit_type", "det_db_thresh": "text_det_thresh", "det_db_box_thresh": "text_det_box_thresh", "det_db_unclip_ratio": "text_det_unclip_ratio", "rec_model_dir": "text_recognition_model_dir", "rec_batch_num": "text_recognition_batch_size", "use_angle_cls": "use_textline_orientation", "cls_model_dir": "textline_orientation_model_dir", "cls_batch_num": "textline_orientation_batch_size", } _SUPPORTED_OCR_VERSIONS = ["PP-OCRv3", "PP-OCRv4", "PP-OCRv5"] # Be comptable with PaddleOCR 2.x interfaces class PaddleOCR(PaddleXPipelineWrapper): def __init__( self, doc_orientation_classify_model_name=None, doc_orientation_classify_model_dir=None, doc_unwarping_model_name=None, doc_unwarping_model_dir=None, text_detection_model_name=None, text_detection_model_dir=None, textline_orientation_model_name=None, textline_orientation_model_dir=None, textline_orientation_batch_size=None, text_recognition_model_name=None, text_recognition_model_dir=None, text_recognition_batch_size=None, use_doc_orientation_classify=None, use_doc_unwarping=None, use_textline_orientation=None, text_det_limit_side_len=None, text_det_limit_type=None, text_det_thresh=None, text_det_box_thresh=None, text_det_unclip_ratio=None, text_det_input_shape=None, text_rec_score_thresh=None, text_rec_input_shape=None, lang=None, ocr_version=None, **kwargs, ): if ocr_version is not None and ocr_version not in _SUPPORTED_OCR_VERSIONS: raise ValueError( f"Invalid OCR version: {ocr_version}. Supported values are {_SUPPORTED_OCR_VERSIONS}." ) if all( map( lambda p: p is None, ( text_detection_model_name, text_detection_model_dir, text_recognition_model_name, text_recognition_model_dir, ), ) ): if lang is not None or ocr_version is not None: det_model_name, rec_model_name = self._get_ocr_model_names( lang, ocr_version ) if det_model_name is None or rec_model_name is None: raise ValueError( f"No models are available for the language {repr(lang)} and OCR version {repr(ocr_version)}." ) text_detection_model_name = det_model_name text_recognition_model_name = rec_model_name else: if lang is not None or ocr_version is not None: warnings.warn( "`lang` and `ocr_version` will be ignored when model names or model directories are not `None`.", stacklevel=2, ) params = { "doc_orientation_classify_model_name": doc_orientation_classify_model_name, "doc_orientation_classify_model_dir": doc_orientation_classify_model_dir, "doc_unwarping_model_name": doc_unwarping_model_name, "doc_unwarping_model_dir": doc_unwarping_model_dir, "text_detection_model_name": text_detection_model_name, "text_detection_model_dir": text_detection_model_dir, "textline_orientation_model_name": textline_orientation_model_name, "textline_orientation_model_dir": textline_orientation_model_dir, "textline_orientation_batch_size": textline_orientation_batch_size, "text_recognition_model_name": text_recognition_model_name, "text_recognition_model_dir": text_recognition_model_dir, "text_recognition_batch_size": text_recognition_batch_size, "use_doc_orientation_classify": use_doc_orientation_classify, "use_doc_unwarping": use_doc_unwarping, "use_textline_orientation": use_textline_orientation, "text_det_limit_side_len": text_det_limit_side_len, "text_det_limit_type": text_det_limit_type, "text_det_thresh": text_det_thresh, "text_det_box_thresh": text_det_box_thresh, "text_det_unclip_ratio": text_det_unclip_ratio, "text_det_input_shape": text_det_input_shape, "text_rec_score_thresh": text_rec_score_thresh, "text_rec_input_shape": text_rec_input_shape, } base_params = {} for name, val in kwargs.items(): if name in _DEPRECATED_PARAM_NAME_MAPPING: new_name = _DEPRECATED_PARAM_NAME_MAPPING[name] warn_deprecated_param(name, new_name) assert ( new_name in params ), f"{repr(new_name)} is not a valid parameter name." if params[new_name] is not None: raise ValueError( f"`{name}` and `{new_name}` are mutually exclusive." ) params[new_name] = val else: base_params[name] = val self._params = params super().__init__(**base_params) @property def _paddlex_pipeline_name(self): return "OCR" def predict_iter( self, input, *, use_doc_orientation_classify=None, use_doc_unwarping=None, use_textline_orientation=None, text_det_limit_side_len=None, text_det_limit_type=None, text_det_thresh=None, text_det_box_thresh=None, text_det_unclip_ratio=None, text_rec_score_thresh=None, ): return self.paddlex_pipeline.predict( input, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, use_textline_orientation=use_textline_orientation, text_det_limit_side_len=text_det_limit_side_len, text_det_limit_type=text_det_limit_type, text_det_thresh=text_det_thresh, text_det_box_thresh=text_det_box_thresh, text_det_unclip_ratio=text_det_unclip_ratio, text_rec_score_thresh=text_rec_score_thresh, ) def predict( self, input, *, use_doc_orientation_classify=None, use_doc_unwarping=None, use_textline_orientation=None, text_det_limit_side_len=None, text_det_limit_type=None, text_det_thresh=None, text_det_box_thresh=None, text_det_unclip_ratio=None, text_rec_score_thresh=None, ): return list( self.predict_iter( input, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, use_textline_orientation=use_textline_orientation, text_det_limit_side_len=text_det_limit_side_len, text_det_limit_type=text_det_limit_type, text_det_thresh=text_det_thresh, text_det_box_thresh=text_det_box_thresh, text_det_unclip_ratio=text_det_unclip_ratio, text_rec_score_thresh=text_rec_score_thresh, ) ) @deprecated("Please use `predict` instead.") def ocr(self, img, **kwargs): return self.predict(img, **kwargs) @classmethod def get_cli_subcommand_executor(cls): return PaddleOCRCLISubcommandExecutor() def _get_paddlex_config_overrides(self): STRUCTURE = { "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[ "doc_orientation_classify_model_name" ], "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[ "doc_orientation_classify_model_dir" ], "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[ "doc_unwarping_model_name" ], "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[ "doc_unwarping_model_dir" ], "SubModules.TextDetection.model_name": self._params[ "text_detection_model_name" ], "SubModules.TextDetection.model_dir": self._params[ "text_detection_model_dir" ], "SubModules.TextLineOrientation.model_name": self._params[ "textline_orientation_model_name" ], "SubModules.TextLineOrientation.model_dir": self._params[ "textline_orientation_model_dir" ], "SubModules.TextLineOrientation.batch_size": self._params[ "textline_orientation_batch_size" ], "SubModules.TextRecognition.model_name": self._params[ "text_recognition_model_name" ], "SubModules.TextRecognition.model_dir": self._params[ "text_recognition_model_dir" ], "SubModules.TextRecognition.batch_size": self._params[ "text_recognition_batch_size" ], "SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[ "use_doc_orientation_classify" ], "SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[ "use_doc_unwarping" ], "use_textline_orientation": self._params["use_textline_orientation"], "SubModules.TextDetection.limit_side_len": self._params[ "text_det_limit_side_len" ], "SubModules.TextDetection.limit_type": self._params["text_det_limit_type"], "SubModules.TextDetection.thresh": self._params["text_det_thresh"], "SubModules.TextDetection.box_thresh": self._params["text_det_box_thresh"], "SubModules.TextDetection.unclip_ratio": self._params[ "text_det_unclip_ratio" ], "SubModules.TextDetection.input_shape": self._params[ "text_det_input_shape" ], "SubModules.TextRecognition.score_thresh": self._params[ "text_rec_score_thresh" ], "SubModules.TextRecognition.input_shape": self._params[ "text_rec_input_shape" ], } return create_config_from_structure(STRUCTURE) def _get_ocr_model_names(self, lang, ppocr_version): if lang is None: lang = "ch" if ppocr_version is None: ppocr_version = "PP-OCRv5" if ppocr_version == "PP-OCRv5": if lang in ("ch", "chinese_cht", "en", "japan"): return "PP-OCRv5_server_det", "PP-OCRv5_server_rec" else: return None, None elif ppocr_version == "PP-OCRv4": if lang == "ch": return "PP-OCRv4_mobile_det", "PP-OCRv4_mobile_rec" elif lang == "en": return "PP-OCRv4_mobile_det", "en_PP-OCRv4_mobile_rec" else: return None, None else: # PP-OCRv3 LATIN_LANGS = [ "af", "az", "bs", "cs", "cy", "da", "de", "es", "et", "fr", "ga", "hr", "hu", "id", "is", "it", "ku", "la", "lt", "lv", "mi", "ms", "mt", "nl", "no", "oc", "pi", "pl", "pt", "ro", "rs_latin", "sk", "sl", "sq", "sv", "sw", "tl", "tr", "uz", "vi", "french", "german", ] ARABIC_LANGS = ["ar", "fa", "ug", "ur"] CYRILLIC_LANGS = [ "ru", "rs_cyrillic", "be", "bg", "uk", "mn", "abq", "ady", "kbd", "ava", "dar", "inh", "che", "lbe", "lez", "tab", ] DEVANAGARI_LANGS = [ "hi", "mr", "ne", "bh", "mai", "ang", "bho", "mah", "sck", "new", "gom", "sa", "bgc", ] rec_lang = None if lang in LATIN_LANGS: rec_lang = "latin" elif lang in ARABIC_LANGS: rec_lang = "arabic" elif lang in CYRILLIC_LANGS: rec_lang = "cyrillic" elif lang in DEVANAGARI_LANGS: rec_lang = "devanagari" else: if lang in [ "ch", "en", "korean", "japan", "chinese_cht", "te", "ka", "ta", ]: rec_lang = lang rec_model_name = None if rec_lang == "ch": rec_model_name = "PP-OCRv3_mobile_rec" elif rec_lang is not None: rec_model_name = f"{rec_lang}_PP-OCRv3_mobile_rec" return "PP-OCRv3_mobile_det", rec_model_name class PaddleOCRCLISubcommandExecutor(PipelineCLISubcommandExecutor): @property def subparser_name(self): return "ocr" def _update_subparser(self, subparser): add_simple_inference_args(subparser) subparser.add_argument( "--doc_orientation_classify_model_name", type=str, help="Name of the document image orientation classification model.", ) subparser.add_argument( "--doc_orientation_classify_model_dir", type=str, help="Path to the document image orientation classification model directory.", ) subparser.add_argument( "--doc_unwarping_model_name", type=str, help="Name of the text image unwarping model.", ) subparser.add_argument( "--doc_unwarping_model_dir", type=str, help="Path to the image unwarping model directory.", ) subparser.add_argument( "--text_detection_model_name", type=str, help="Name of the text detection model.", ) subparser.add_argument( "--text_detection_model_dir", type=str, help="Path to the text detection model directory.", ) subparser.add_argument( "--textline_orientation_model_name", type=str, help="Name of the text line orientation classification model.", ) subparser.add_argument( "--textline_orientation_model_dir", type=str, help="Path to the text line orientation classification model directory.", ) subparser.add_argument( "--textline_orientation_batch_size", type=int, help="Batch size for the text line orientation classification model.", ) subparser.add_argument( "--text_recognition_model_name", type=str, help="Name of the text recognition model.", ) subparser.add_argument( "--text_recognition_model_dir", type=str, help="Path to the text recognition model directory.", ) subparser.add_argument( "--text_recognition_batch_size", type=int, help="Batch size for the text recognition model.", ) subparser.add_argument( "--use_doc_orientation_classify", type=str2bool, help="Whether to use document image orientation classification.", ) subparser.add_argument( "--use_doc_unwarping", type=str2bool, help="Whether to use text image unwarping.", ) subparser.add_argument( "--use_textline_orientation", type=str2bool, help="Whether to use text line orientation classification.", ) subparser.add_argument( "--text_det_limit_side_len", type=int, help="This sets a limit on the side length of the input image for the text detection model.", ) subparser.add_argument( "--text_det_limit_type", type=str, help="This determines how the side length limit is applied to the input image before feeding it into the text deteciton model.", ) subparser.add_argument( "--text_det_thresh", type=float, help="Detection pixel threshold for the text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.", ) subparser.add_argument( "--text_det_box_thresh", type=float, help="Detection box threshold for the text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.", ) subparser.add_argument( "--text_det_unclip_ratio", type=float, help="Text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.", ) subparser.add_argument( "--text_det_input_shape", nargs=3, type=int, metavar=("C", "H", "W"), help="Input shape of the text detection model.", ) subparser.add_argument( "--text_rec_score_thresh", type=float, help="Text recognition threshold. Text results with scores greater than this threshold are retained.", ) subparser.add_argument( "--text_rec_input_shape", nargs=3, type=int, metavar=("C", "H", "W"), help="Input shape of the text recognition model.", ) subparser.add_argument( "--lang", type=str, help="Language in the input image for OCR processing." ) subparser.add_argument( "--ocr_version", type=str, choices=_SUPPORTED_OCR_VERSIONS, help="PP-OCR version to use.", ) deprecated_arg_types = { "det_model_dir": str, "det_limit_side_len": int, "det_limit_type": str, "det_db_thresh": float, "det_db_box_thresh": float, "det_db_unclip_ratio": float, "rec_model_dir": str, "rec_batch_num": int, "use_angle_cls": str2bool, "cls_model_dir": str, "cls_batch_num": int, } for name, new_name in _DEPRECATED_PARAM_NAME_MAPPING.items(): assert name in deprecated_arg_types, name subparser.add_argument( "--" + name, action=DeprecatedOptionAction, type=str, help=f"[Deprecated] Please use `--{new_name}` instead.", ) def execute_with_args(self, args): params = get_subcommand_args(args) for name, new_name in _DEPRECATED_PARAM_NAME_MAPPING.items(): assert name in params val = params[name] new_val = params[new_name] if val is not None and new_val is not None: logger.error( "`--%s` and `--%s` are mutually exclusive.", name, new_name ) sys.exit(2) if val is None: params.pop(name) perform_simple_inference(PaddleOCR, params)