# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .._utils.cli import ( add_simple_inference_args, get_subcommand_args, perform_simple_inference, str2bool, ) from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor from .utils import create_config_from_structure class FormulaRecognitionPipeline(PaddleXPipelineWrapper): def __init__( self, doc_orientation_classify_model_name=None, doc_orientation_classify_model_dir=None, doc_orientation_classify_batch_size=None, doc_unwarping_model_name=None, doc_unwarping_model_dir=None, doc_unwarping_batch_size=None, use_doc_orientation_classify=None, use_doc_unwarping=None, layout_detection_model_name=None, layout_detection_model_dir=None, layout_threshold=None, layout_nms=None, layout_unclip_ratio=None, layout_merge_bboxes_mode=None, layout_detection_batch_size=None, use_layout_detection=None, formula_recognition_model_name=None, formula_recognition_model_dir=None, formula_recognition_batch_size=None, **kwargs, ): params = locals().copy() params.pop("self") params.pop("kwargs") self._params = params super().__init__(**kwargs) @property def _paddlex_pipeline_name(self): return "formula_recognition" def predict_iter( self, input, *, use_layout_detection=None, use_doc_orientation_classify=None, use_doc_unwarping=None, layout_det_res=None, layout_threshold=None, layout_nms=None, layout_unclip_ratio=None, layout_merge_bboxes_mode=None, **kwargs, ): return self.paddlex_pipeline.predict( input, use_layout_detection=use_layout_detection, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, layout_det_res=layout_det_res, layout_threshold=layout_threshold, layout_nms=layout_nms, layout_unclip_ratio=layout_unclip_ratio, layout_merge_bboxes_mode=layout_merge_bboxes_mode, **kwargs, ) def predict( self, input, *, use_layout_detection=None, use_doc_orientation_classify=None, use_doc_unwarping=None, layout_det_res=None, layout_threshold=None, layout_nms=None, layout_unclip_ratio=None, layout_merge_bboxes_mode=None, **kwargs, ): return list( self.predict_iter( input, use_layout_detection=use_layout_detection, use_doc_orientation_classify=use_doc_orientation_classify, use_doc_unwarping=use_doc_unwarping, layout_det_res=layout_det_res, layout_threshold=layout_threshold, layout_nms=layout_nms, layout_unclip_ratio=layout_unclip_ratio, layout_merge_bboxes_mode=layout_merge_bboxes_mode, **kwargs, ) ) @classmethod def get_cli_subcommand_executor(cls): return FormulaRecognitionPipelineCLISubcommandExecutor() def _get_paddlex_config_overrides(self): STRUCTURE = { "use_layout_detection": self._params["use_layout_detection"], "SubModules.LayoutDetection.model_name": self._params[ "layout_detection_model_name" ], "SubModules.LayoutDetection.model_dir": self._params[ "layout_detection_model_dir" ], "SubModules.LayoutDetection.threshold": self._params["layout_threshold"], "SubModules.LayoutDetection.layout_nms": self._params["layout_nms"], "SubModules.LayoutDetection.layout_unclip_ratio": self._params[ "layout_unclip_ratio" ], "SubModules.LayoutDetection.layout_merge_bboxes_mode": self._params[ "layout_merge_bboxes_mode" ], "SubModules.LayoutDetection.batch_size": self._params[ "layout_detection_batch_size" ], "SubModules.FormulaRecognition.model_name": self._params[ "formula_recognition_model_name" ], "SubModules.FormulaRecognition.model_dir": self._params[ "formula_recognition_model_dir" ], "SubModules.FormulaRecognition.batch_size": self._params[ "formula_recognition_batch_size" ], "SubPipelines.DocPreprocessor.use_doc_orientation_classify": self._params[ "use_doc_orientation_classify" ], "SubPipelines.DocPreprocessor.use_doc_unwarping": self._params[ "use_doc_unwarping" ], "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_name": self._params[ "doc_orientation_classify_model_name" ], "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.model_dir": self._params[ "doc_orientation_classify_model_dir" ], "SubPipelines.DocPreprocessor.SubModules.DocOrientationClassify.batch_size": self._params[ "doc_orientation_classify_batch_size" ], "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_name": self._params[ "doc_unwarping_model_name" ], "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.model_dir": self._params[ "doc_unwarping_model_dir" ], "SubPipelines.DocPreprocessor.SubModules.DocUnwarping.batch_size": self._params[ "doc_unwarping_batch_size" ], } return create_config_from_structure(STRUCTURE) class FormulaRecognitionPipelineCLISubcommandExecutor(PipelineCLISubcommandExecutor): @property def subparser_name(self): return "formula_recognition_pipeline" def _update_subparser(self, subparser): add_simple_inference_args(subparser) subparser.add_argument( "--doc_orientation_classify_model_name", type=str, help="Name of the document image orientation classification model.", ) subparser.add_argument( "--doc_orientation_classify_model_dir", type=str, help="Directory of the document image orientation classification model.", ) subparser.add_argument( "--doc_orientation_classify_batch_size", type=int, help="Batch size for document image orientation classification.", ) subparser.add_argument( "--doc_unwarping_model_name", type=str, help="Name of the document unwarping model.", ) subparser.add_argument( "--doc_unwarping_model_dir", type=str, help="Directory of the document unwarping model.", ) subparser.add_argument( "--doc_unwarping_batch_size", type=int, help="Batch size for document unwarping.", ) subparser.add_argument( "--use_doc_orientation_classify", type=str2bool, help="Use document image orientation classification.", ) subparser.add_argument( "--use_doc_unwarping", type=str2bool, help="Use document unwarping.", ) subparser.add_argument( "--layout_detection_model_name", type=str, help="Name of the layout detection model.", ) subparser.add_argument( "--layout_detection_model_dir", type=str, help="Directory of the layout detection model.", ) subparser.add_argument( "--layout_threshold", type=float, help="Threshold for layout detection.", ) subparser.add_argument( "--layout_nms", type=str2bool, help="Non-maximum suppression for layout detection.", ) subparser.add_argument( "--layout_unclip_ratio", type=float, help="Unclip ratio for layout detection.", ) subparser.add_argument( "--layout_merge_bboxes_mode", type=str, help="Mode for merging bounding boxes in layout detection.", ) subparser.add_argument( "--layout_detection_batch_size", type=int, help="Batch size for layout detection.", ) subparser.add_argument( "--use_layout_detection", type=str2bool, help="Use layout detection.", ) subparser.add_argument( "--formula_recognition_model_name", type=str, help="Name of the formula recognition model.", ) subparser.add_argument( "--formula_recognition_model_dir", type=str, help="Directory of the formula recognition model.", ) subparser.add_argument( "--formula_recognition_batch_size", type=int, help="Batch size for formula recognition.", ) def execute_with_args(self, args): params = get_subcommand_args(args) perform_simple_inference(FormulaRecognitionPipeline, params)