Global: model_name: PP-FormulaNet_plus-L # To use static model for inference. use_gpu: True epoch_num: 10 log_smooth_window: 10 print_batch_step: 10 save_model_dir: ./output/rec/pp_formulanet_plus_l/ save_epoch_step: 2 # evaluation is run every 417 iterations (1 epoch)(batch_size = 24) # max_seq_len: 1024 eval_batch_step: [0, 417 ] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/datasets/pme_demo/0000013.png infer_mode: False use_space_char: False rec_char_dict_path: &rec_char_dict_path ppocr/utils/dict/unimernet_tokenizer max_new_tokens: &max_new_tokens 2560 input_size: &input_size [768, 768] save_res_path: ./output/rec/predicts_pp_formulanet_plus_l.txt allow_resize_largeImg: False start_ema: True d2s_train_image_shape: [1,768,768] Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 weight_decay: 0.05 lr: name: LinearWarmupCosine learning_rate: 0.0001 Architecture: model_type: rec algorithm: PP-FormulaNet_plus-L in_channels: 3 Transform: Backbone: name: Vary_VIT_B_Formula image_size: 768 encoder_embed_dim: 768 encoder_depth: 12 encoder_num_heads: 12 encoder_global_attn_indexes: [2, 5, 8, 11] Head: name: PPFormulaNet_Head max_new_tokens: *max_new_tokens decoder_start_token_id: 0 decoder_ffn_dim: 2048 decoder_hidden_size: 512 decoder_layers: 8 temperature: 0.2 do_sample: False top_p: 0.95 encoder_hidden_size: 1024 is_export: False length_aware: False use_parallel: False parallel_step: 0 Loss: name: PPFormulaNet_L_Loss PostProcess: name: UniMERNetDecode rec_char_dict_path: *rec_char_dict_path Metric: name: LaTeXOCRMetric main_indicator: exp_rate cal_bleu_score: True Train: dataset: name: SimpleDataSet data_dir: ./ocr_rec_latexocr_dataset_example label_file_list: ["./ocr_rec_latexocr_dataset_example/train.txt"] transforms: - UniMERNetImgDecode: input_size: *input_size random_padding: True random_resize: True random_crop: True - UniMERNetTrainTransform: - LatexImageFormat: - UniMERNetLabelEncode: rec_char_dict_path: *rec_char_dict_path max_seq_len: *max_new_tokens - KeepKeys: keep_keys: ['image', 'label', 'attention_mask'] loader: shuffle: False drop_last: False batch_size_per_card: 3 num_workers: 0 collate_fn: UniMERNetCollator Eval: dataset: name: SimpleDataSet data_dir: ./ocr_rec_latexocr_dataset_example label_file_list: ["./ocr_rec_latexocr_dataset_example/val.txt"] transforms: - UniMERNetImgDecode: input_size: *input_size - UniMERNetTestTransform: - LatexImageFormat: - UniMERNetLabelEncode: max_seq_len: *max_new_tokens rec_char_dict_path: *rec_char_dict_path - KeepKeys: keep_keys: ['image', 'label', 'attention_mask', 'filename'] loader: shuffle: False drop_last: False batch_size_per_card: 10 num_workers: 0 collate_fn: UniMERNetCollator