name: DBNet base: ['config/icdar2015.yaml'] arch: type: Model backbone: type: resnet18 pretrained: true neck: type: FPN inner_channels: 256 head: type: DBHead out_channels: 2 k: 50 post_processing: type: SegDetectorRepresenter args: thresh: 0.3 box_thresh: 0.7 max_candidates: 1000 unclip_ratio: 1.5 # from paper metric: type: QuadMetric args: is_output_polygon: false loss: type: DBLoss alpha: 1 beta: 10 ohem_ratio: 3 optimizer: type: Adam args: lr: 0.001 weight_decay: 0 amsgrad: true lr_scheduler: type: WarmupPolyLR args: warmup_epoch: 3 trainer: seed: 2 epochs: 1200 log_iter: 10 show_images_iter: 50 resume_checkpoint: '' finetune_checkpoint: '' output_dir: output visual_dl: false amp: scale_loss: 1024 amp_level: O2 custom_white_list: [] custom_black_list: ['exp', 'sigmoid', 'concat'] dataset: train: dataset: args: data_path: - ./datasets/train.txt img_mode: RGB loader: batch_size: 1 shuffle: true num_workers: 6 collate_fn: '' validate: dataset: args: data_path: - ./datasets/test.txt pre_processes: - type: ResizeShortSize args: short_size: 736 resize_text_polys: false img_mode: RGB loader: batch_size: 1 shuffle: true num_workers: 6 collate_fn: ICDARCollectFN