You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
4.9 KiB

1 month ago
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .._utils.cli import (
add_simple_inference_args,
get_subcommand_args,
perform_simple_inference,
str2bool,
)
from .base import PaddleXPipelineWrapper, PipelineCLISubcommandExecutor
from .utils import create_config_from_structure
class DocPreprocessor(PaddleXPipelineWrapper):
def __init__(
self,
doc_orientation_classify_model_name=None,
doc_orientation_classify_model_dir=None,
doc_unwarping_model_name=None,
doc_unwarping_model_dir=None,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
**kwargs,
):
self._params = {
"doc_orientation_classify_model_name": doc_orientation_classify_model_name,
"doc_orientation_classify_model_dir": doc_orientation_classify_model_dir,
"doc_unwarping_model_name": doc_unwarping_model_name,
"doc_unwarping_model_dir": doc_unwarping_model_dir,
"use_doc_orientation_classify": use_doc_orientation_classify,
"use_doc_unwarping": use_doc_unwarping,
}
super().__init__(**kwargs)
@property
def _paddlex_pipeline_name(self):
return "doc_preprocessor"
def predict_iter(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
):
return self.paddlex_pipeline.predict(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
)
def predict(
self,
input,
*,
use_doc_orientation_classify=None,
use_doc_unwarping=None,
):
return list(
self.predict_iter(
input,
use_doc_orientation_classify=use_doc_orientation_classify,
use_doc_unwarping=use_doc_unwarping,
)
)
@classmethod
def get_cli_subcommand_executor(cls):
return DocPreprocessorCLISubcommandExecutor()
def _get_paddlex_config_overrides(self):
STRUCTURE = {
"SubModules.DocOrientationClassify.model_name": self._params[
"doc_orientation_classify_model_name"
],
"SubModules.DocOrientationClassify.model_dir": self._params[
"doc_orientation_classify_model_dir"
],
"SubModules.DocUnwarping.model_name": self._params[
"doc_unwarping_model_name"
],
"SubModules.DocUnwarping.model_dir": self._params[
"doc_unwarping_model_dir"
],
"use_doc_orientation_classify": self._params[
"use_doc_orientation_classify"
],
"use_doc_unwarping": self._params["use_doc_unwarping"],
}
return create_config_from_structure(STRUCTURE)
class DocPreprocessorCLISubcommandExecutor(PipelineCLISubcommandExecutor):
@property
def subparser_name(self):
return "doc_preprocessor"
def _update_subparser(self, subparser):
add_simple_inference_args(subparser)
subparser.add_argument(
"--doc_orientation_classify_model_name",
type=str,
help="Name of the document image orientation classification model.",
)
subparser.add_argument(
"--doc_orientation_classify_model_dir",
type=str,
help="Path to the document image orientation classification model directory.",
)
subparser.add_argument(
"--doc_unwarping_model_name",
type=str,
help="Name of the document image unwarping model.",
)
subparser.add_argument(
"--doc_unwarping_model_dir",
type=str,
help="Path to the document image unwarping model directory.",
)
subparser.add_argument(
"--use_doc_orientation_classify",
type=str2bool,
help="Whether to use document image orientation classification.",
)
subparser.add_argument(
"--use_doc_unwarping",
type=str2bool,
help="Whether to use text image unwarping.",
)
def execute_with_args(self, args):
params = get_subcommand_args(args)
perform_simple_inference(DocPreprocessor, params)