import numpy as np from PIL import Image # img = r'C:\Users\Administrator\Desktop\Upload\d825cc1e-6518-afd5-1b02-ed88a7a72806.jpg' # out_img = r'C:\Users\Administrator\Desktop\Upload\d825cc1e-6518-afd5-1b02-ed88a7a72806_xiangao1.jpg' img = r'C:\Users\Administrator\Desktop\Demo\demo3_in_out.png' out_img=r'C:\Users\Administrator\Desktop\Demo\demo3_in_out_f.png' array = np.asarray(Image.open(img).convert('L')).astype(np.float64) # 根据灰度变化来模拟人类视觉的明暗程度 depth = 10 # 预设虚拟深度值为10 范围为0-100 # 提取x y方向梯度值 解构赋给grad_x, grad_y grad_x, grad_y = np.gradient(array) # 利用像素之间的梯度值和虚拟深度值对图像进行重构 grad_x = grad_x * depth / 100 grad_y = grad_y * depth / 100 # 梯度归一化 定义z深度为1. 将三个梯度绝对值转化为相对值,在三维中是相对于斜对角线A的值 dis = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.0) uni_x = grad_x / dis uni_y = grad_y / dis uni_z = 1.0 / dis # 光源俯视角度和光源方位角度 vec_el = np.pi / 2.2 vec_az = np.pi / 4 # 光源对x、y、z轴的影响 dx = np.cos(vec_el) * np.cos(vec_az) dy = np.cos(vec_el) * np.sin(vec_az) dz = np.sin(vec_el) # 光源归一化 out = 255 * (uni_x * dx + uni_y * dy + uni_z * dz) out = out.clip(0, 255) img = Image.fromarray(out.astype(np.uint8)) img.save(out_img)