You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1022 lines
27 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import json
import socket
import subprocess
import re
import os
import wave
from io import BytesIO
from core.utils import p3
import numpy as np
import requests
import opuslib_next
from pydub import AudioSegment
import copy
TAG = __name__
emoji_map = {
"neutral": "😶",
"happy": "🙂",
"laughing": "😆",
"funny": "😂",
"sad": "😔",
"angry": "😠",
"crying": "😭",
"loving": "😍",
"embarrassed": "😳",
"surprised": "😲",
"shocked": "😱",
"thinking": "🤔",
"winking": "😉",
"cool": "😎",
"relaxed": "😌",
"delicious": "🤤",
"kissy": "😘",
"confident": "😏",
"sleepy": "😴",
"silly": "😜",
"confused": "🙄",
}
def get_local_ip():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Connect to Google's DNS servers
s.connect(("8.8.8.8", 80))
local_ip = s.getsockname()[0]
s.close()
return local_ip
except Exception as e:
return "127.0.0.1"
def is_private_ip(ip_addr):
"""
Check if an IP address is a private IP address (compatible with IPv4 and IPv6).
@param {string} ip_addr - The IP address to check.
@return {bool} True if the IP address is private, False otherwise.
"""
try:
# Validate IPv4 or IPv6 address format
if not re.match(
r"^(\d{1,3}\.){3}\d{1,3}$|^([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}$", ip_addr
):
return False # Invalid IP address format
# IPv4 private address ranges
if "." in ip_addr: # IPv4 address
ip_parts = list(map(int, ip_addr.split(".")))
if ip_parts[0] == 10:
return True # 10.0.0.0/8 range
elif ip_parts[0] == 172 and 16 <= ip_parts[1] <= 31:
return True # 172.16.0.0/12 range
elif ip_parts[0] == 192 and ip_parts[1] == 168:
return True # 192.168.0.0/16 range
elif ip_addr == "127.0.0.1":
return True # Loopback address
elif ip_parts[0] == 169 and ip_parts[1] == 254:
return True # Link-local address 169.254.0.0/16
else:
return False # Not a private IPv4 address
else: # IPv6 address
ip_addr = ip_addr.lower()
if ip_addr.startswith("fc00:") or ip_addr.startswith("fd00:"):
return True # Unique Local Addresses (FC00::/7)
elif ip_addr == "::1":
return True # Loopback address
elif ip_addr.startswith("fe80:"):
return True # Link-local unicast addresses (FE80::/10)
else:
return False # Not a private IPv6 address
except (ValueError, IndexError):
return False # IP address format error or insufficient segments
def get_ip_info(ip_addr, logger):
try:
# 导入全局缓存管理器
from core.utils.cache.manager import cache_manager, CacheType
# 先从缓存获取
cached_ip_info = cache_manager.get(CacheType.IP_INFO, ip_addr)
if cached_ip_info is not None:
return cached_ip_info
# 缓存未命中调用API
if is_private_ip(ip_addr):
ip_addr = ""
url = f"https://whois.pconline.com.cn/ipJson.jsp?json=true&ip={ip_addr}"
resp = requests.get(url).json()
ip_info = {"city": resp.get("city")}
# 存入缓存
cache_manager.set(CacheType.IP_INFO, ip_addr, ip_info)
return ip_info
except Exception as e:
logger.bind(tag=TAG).error(f"Error getting client ip info: {e}")
return {}
def write_json_file(file_path, data):
"""将数据写入 JSON 文件"""
with open(file_path, "w", encoding="utf-8") as file:
json.dump(data, file, ensure_ascii=False, indent=4)
def is_punctuation_or_emoji(char):
"""检查字符是否为空格、指定标点或表情符号"""
# 定义需要去除的中英文标点(包括全角/半角)
punctuation_set = {
"",
",", # 中文逗号 + 英文逗号
"-",
"", # 英文连字符 + 中文全角横线
"", # 中文顿号
"",
"",
'"', # 中文双引号 + 英文引号
"",
":", # 中文冒号 + 英文冒号
}
if char.isspace() or char in punctuation_set:
return True
# 检查表情符号(保留原有逻辑)
code_point = ord(char)
emoji_ranges = [
(0x1F600, 0x1F64F),
(0x1F300, 0x1F5FF),
(0x1F680, 0x1F6FF),
(0x1F900, 0x1F9FF),
(0x1FA70, 0x1FAFF),
(0x2600, 0x26FF),
(0x2700, 0x27BF),
]
return any(start <= code_point <= end for start, end in emoji_ranges)
def get_string_no_punctuation_or_emoji(s):
"""去除字符串首尾的空格、标点符号和表情符号"""
chars = list(s)
# 处理开头的字符
start = 0
while start < len(chars) and is_punctuation_or_emoji(chars[start]):
start += 1
# 处理结尾的字符
end = len(chars) - 1
while end >= start and is_punctuation_or_emoji(chars[end]):
end -= 1
return "".join(chars[start : end + 1])
def remove_punctuation_and_length(text):
# 全角符号和半角符号的Unicode范围
full_width_punctuations = (
"!"#$%&'()*+,-。/:;<=>?@[\]^_`{|}~"
)
half_width_punctuations = r'!"#$%&\'()*+,-./:;<=>?@[\]^_`{|}~'
space = " " # 半角空格
full_width_space = " " # 全角空格
# 去除全角和半角符号以及空格
result = "".join(
[
char
for char in text
if char not in full_width_punctuations
and char not in half_width_punctuations
and char not in space
and char not in full_width_space
]
)
if result == "Yeah":
return 0, ""
return len(result), result
def check_model_key(modelType, modelKey):
if "" in modelKey:
return f"配置错误: {modelType} 的 API key 未设置,当前值为: {modelKey}"
return None
def parse_string_to_list(value, separator=";"):
"""
将输入值转换为列表
Args:
value: 输入值,可以是 None、字符串或列表
separator: 分隔符,默认为分号
Returns:
list: 处理后的列表
"""
if value is None or value == "":
return []
elif isinstance(value, str):
return [item.strip() for item in value.split(separator) if item.strip()]
elif isinstance(value, list):
return value
return []
def check_ffmpeg_installed():
ffmpeg_installed = False
try:
# 执行ffmpeg -version命令并捕获输出
result = subprocess.run(
["ffmpeg", "-version"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True, # 如果返回码非零则抛出异常
)
# 检查输出中是否包含版本信息(可选)
output = result.stdout + result.stderr
if "ffmpeg version" in output.lower():
ffmpeg_installed = True
return False
except (subprocess.CalledProcessError, FileNotFoundError):
# 命令执行失败或未找到
ffmpeg_installed = False
if not ffmpeg_installed:
error_msg = "您的电脑还没正确安装ffmpeg\n"
error_msg += "\n建议您:\n"
error_msg += "1、按照项目的安装文档正确进入conda环境\n"
error_msg += "2、查阅安装文档如何在conda环境中安装ffmpeg\n"
raise ValueError(error_msg)
def extract_json_from_string(input_string):
"""提取字符串中的 JSON 部分"""
pattern = r"(\{.*\})"
match = re.search(pattern, input_string, re.DOTALL) # 添加 re.DOTALL
if match:
return match.group(1) # 返回提取的 JSON 字符串
return None
def analyze_emotion(text):
"""
分析文本情感并返回对应的emoji名称支持中英文
"""
if not text or not isinstance(text, str):
return "neutral"
original_text = text
text = text.lower().strip()
# 检查是否包含现有emoji
for emotion, emoji in emoji_map.items():
if emoji in original_text:
return emotion
# 标点符号分析
has_exclamation = "!" in original_text or "" in original_text
has_question = "?" in original_text or "" in original_text
has_ellipsis = "..." in original_text or "" in original_text
# 定义情感关键词映射(中英文扩展版)
emotion_keywords = {
"happy": [
"开心",
"高兴",
"快乐",
"愉快",
"幸福",
"满意",
"",
"",
"不错",
"完美",
"棒极了",
"太好了",
"好呀",
"好的",
"happy",
"joy",
"great",
"good",
"nice",
"awesome",
"fantastic",
"wonderful",
],
"laughing": [
"哈哈",
"哈哈哈",
"呵呵",
"嘿嘿",
"嘻嘻",
"笑死",
"太好笑了",
"笑死我了",
"lol",
"lmao",
"haha",
"hahaha",
"hehe",
"rofl",
"funny",
"laugh",
],
"funny": [
"搞笑",
"滑稽",
"",
"幽默",
"笑点",
"段子",
"笑话",
"太逗了",
"hilarious",
"joke",
"comedy",
],
"sad": [
"伤心",
"难过",
"悲哀",
"悲伤",
"忧郁",
"郁闷",
"沮丧",
"失望",
"想哭",
"难受",
"不开心",
"",
"呜呜",
"sad",
"upset",
"unhappy",
"depressed",
"sorrow",
"gloomy",
],
"angry": [
"生气",
"愤怒",
"气死",
"讨厌",
"烦人",
"可恶",
"烦死了",
"恼火",
"暴躁",
"火大",
"愤怒",
"气炸了",
"angry",
"mad",
"annoyed",
"furious",
"pissed",
"hate",
],
"crying": [
"哭泣",
"泪流",
"大哭",
"伤心欲绝",
"泪目",
"流泪",
"哭死",
"哭晕",
"想哭",
"泪崩",
"cry",
"crying",
"tears",
"sob",
"weep",
],
"loving": [
"爱你",
"喜欢",
"",
"亲爱的",
"宝贝",
"么么哒",
"抱抱",
"想你",
"思念",
"最爱",
"亲亲",
"喜欢你",
"love",
"like",
"adore",
"darling",
"sweetie",
"honey",
"miss you",
"heart",
],
"embarrassed": [
"尴尬",
"不好意思",
"害羞",
"脸红",
"难为情",
"社死",
"丢脸",
"出丑",
"embarrassed",
"awkward",
"shy",
"blush",
],
"surprised": [
"惊讶",
"吃惊",
"天啊",
"哇塞",
"",
"居然",
"竟然",
"没想到",
"出乎意料",
"surprise",
"wow",
"omg",
"oh my god",
"amazing",
"unbelievable",
],
"shocked": [
"震惊",
"吓到",
"惊呆了",
"不敢相信",
"震撼",
"吓死",
"恐怖",
"害怕",
"吓人",
"shocked",
"shocking",
"scared",
"frightened",
"terrified",
"horror",
],
"thinking": [
"思考",
"考虑",
"想一下",
"琢磨",
"沉思",
"冥想",
"",
"思考中",
"在想",
"think",
"thinking",
"consider",
"ponder",
"meditate",
],
"winking": [
"调皮",
"眨眼",
"你懂的",
"坏笑",
"邪恶",
"奸笑",
"使眼色",
"wink",
"teasing",
"naughty",
"mischievous",
],
"cool": [
"",
"",
"厉害",
"棒极了",
"真棒",
"牛逼",
"",
"优秀",
"杰出",
"出色",
"完美",
"cool",
"awesome",
"amazing",
"great",
"impressive",
"perfect",
],
"relaxed": [
"放松",
"舒服",
"惬意",
"悠闲",
"轻松",
"舒适",
"安逸",
"自在",
"relax",
"relaxed",
"comfortable",
"cozy",
"chill",
"peaceful",
],
"delicious": [
"好吃",
"美味",
"",
"",
"可口",
"香甜",
"大餐",
"大快朵颐",
"流口水",
"垂涎",
"delicious",
"yummy",
"tasty",
"yum",
"appetizing",
"mouthwatering",
],
"kissy": [
"亲亲",
"么么",
"",
"mua",
"muah",
"亲一下",
"飞吻",
"kiss",
"xoxo",
"hug",
"muah",
"smooch",
],
"confident": [
"自信",
"肯定",
"确定",
"毫无疑问",
"当然",
"必须的",
"毫无疑问",
"确信",
"坚信",
"confident",
"sure",
"certain",
"definitely",
"positive",
],
"sleepy": [
"",
"睡觉",
"晚安",
"想睡",
"好累",
"疲惫",
"疲倦",
"困了",
"想休息",
"睡意",
"sleep",
"sleepy",
"tired",
"exhausted",
"bedtime",
"good night",
],
"silly": [
"",
"",
"",
"",
"",
"",
"憨憨",
"傻乎乎",
"呆萌",
"silly",
"stupid",
"dumb",
"foolish",
"goofy",
"ridiculous",
],
"confused": [
"疑惑",
"不明白",
"不懂",
"困惑",
"疑问",
"为什么",
"怎么回事",
"啥意思",
"不清楚",
"confused",
"puzzled",
"doubt",
"question",
"what",
"why",
"how",
],
}
# 特殊句型判断(中英文)
# 赞美他人
if any(
phrase in text
for phrase in [
"你真",
"你好",
"您真",
"你真棒",
"你好厉害",
"你太强了",
"你真好",
"你真聪明",
"you are",
"you're",
"you look",
"you seem",
"so smart",
"so kind",
]
):
return "loving"
# 自我赞美
if any(
phrase in text
for phrase in [
"我真",
"我最",
"我太棒了",
"我厉害",
"我聪明",
"我优秀",
"i am",
"i'm",
"i feel",
"so good",
"so happy",
]
):
return "cool"
# 晚安/睡觉相关
if any(
phrase in text
for phrase in [
"睡觉",
"晚安",
"睡了",
"好梦",
"休息了",
"去睡了",
"sleep",
"good night",
"bedtime",
"go to bed",
]
):
return "sleepy"
# 疑问句
if has_question and not has_exclamation:
return "thinking"
# 强烈情感(感叹号)
if has_exclamation and not has_question:
# 检查是否是积极内容
positive_words = (
emotion_keywords["happy"]
+ emotion_keywords["laughing"]
+ emotion_keywords["cool"]
)
if any(word in text for word in positive_words):
return "laughing"
# 检查是否是消极内容
negative_words = (
emotion_keywords["angry"]
+ emotion_keywords["sad"]
+ emotion_keywords["crying"]
)
if any(word in text for word in negative_words):
return "angry"
return "surprised"
# 省略号(表示犹豫或思考)
if has_ellipsis:
return "thinking"
# 关键词匹配(带权重)
emotion_scores = {emotion: 0 for emotion in emoji_map.keys()}
# 给匹配到的关键词加分
for emotion, keywords in emotion_keywords.items():
for keyword in keywords:
if keyword in text:
emotion_scores[emotion] += 1
# 给长文本中的重复关键词额外加分
if len(text) > 20: # 长文本
for emotion, keywords in emotion_keywords.items():
for keyword in keywords:
emotion_scores[emotion] += text.count(keyword) * 0.5
# 根据分数选择最可能的情感
max_score = max(emotion_scores.values())
if max_score == 0:
return "happy" # 默认
# 可能有多个情感同分,根据上下文选择最合适的
top_emotions = [e for e, s in emotion_scores.items() if s == max_score]
# 如果多个情感同分,使用以下优先级
priority_order = [
"laughing",
"crying",
"angry",
"surprised",
"shocked", # 强烈情感优先
"loving",
"happy",
"funny",
"cool", # 积极情感
"sad",
"embarrassed",
"confused", # 消极情感
"thinking",
"winking",
"relaxed", # 中性情感
"delicious",
"kissy",
"confident",
"sleepy",
"silly", # 特殊场景
]
for emotion in priority_order:
if emotion in top_emotions:
return emotion
return top_emotions[0] # 如果都不在优先级列表里,返回第一个
def audio_to_data(audio_file_path, is_opus=True):
# 获取文件后缀名
file_type = os.path.splitext(audio_file_path)[1]
if file_type:
file_type = file_type.lstrip(".")
# 读取音频文件,-nostdin 参数不要从标准输入读取数据否则FFmpeg会阻塞
audio = AudioSegment.from_file(
audio_file_path, format=file_type, parameters=["-nostdin"]
)
# 转换为单声道/16kHz采样率/16位小端编码确保与编码器匹配
audio = audio.set_channels(1).set_frame_rate(16000).set_sample_width(2)
# 音频时长(秒)
duration = len(audio) / 1000.0
# 获取原始PCM数据16位小端
raw_data = audio.raw_data
return pcm_to_data(raw_data, is_opus), duration
def audio_bytes_to_data(audio_bytes, file_type, is_opus=True):
"""
直接用音频二进制数据转为opus/pcm数据支持wav、mp3、p3
"""
if file_type == "p3":
# 直接用p3解码
return p3.decode_opus_from_bytes(audio_bytes)
else:
# 其他格式用pydub
audio = AudioSegment.from_file(
BytesIO(audio_bytes), format=file_type, parameters=["-nostdin"]
)
audio = audio.set_channels(1).set_frame_rate(16000).set_sample_width(2)
duration = len(audio) / 1000.0
raw_data = audio.raw_data
return pcm_to_data(raw_data, is_opus), duration
def pcm_to_data(raw_data, is_opus=True):
# 初始化Opus编码器
encoder = opuslib_next.Encoder(16000, 1, opuslib_next.APPLICATION_AUDIO)
# 编码参数
frame_duration = 60 # 60ms per frame
frame_size = int(16000 * frame_duration / 1000) # 960 samples/frame
datas = []
# 按帧处理所有音频数据(包括最后一帧可能补零)
for i in range(0, len(raw_data), frame_size * 2): # 16bit=2bytes/sample
# 获取当前帧的二进制数据
chunk = raw_data[i : i + frame_size * 2]
# 如果最后一帧不足,补零
if len(chunk) < frame_size * 2:
chunk += b"\x00" * (frame_size * 2 - len(chunk))
if is_opus:
# 转换为numpy数组处理
np_frame = np.frombuffer(chunk, dtype=np.int16)
# 编码Opus数据
frame_data = encoder.encode(np_frame.tobytes(), frame_size)
else:
frame_data = chunk if isinstance(chunk, bytes) else bytes(chunk)
datas.append(frame_data)
return datas
def opus_datas_to_wav_bytes(opus_datas, sample_rate=16000, channels=1):
"""
将opus帧列表解码为wav字节流
"""
decoder = opuslib_next.Decoder(sample_rate, channels)
pcm_datas = []
frame_duration = 60 # ms
frame_size = int(sample_rate * frame_duration / 1000) # 960
for opus_frame in opus_datas:
# 解码为PCM返回bytes2字节/采样点)
pcm = decoder.decode(opus_frame, frame_size)
pcm_datas.append(pcm)
pcm_bytes = b"".join(pcm_datas)
# 写入wav字节流
wav_buffer = BytesIO()
with wave.open(wav_buffer, "wb") as wf:
wf.setnchannels(channels)
wf.setsampwidth(2) # 16bit
wf.setframerate(sample_rate)
wf.writeframes(pcm_bytes)
return wav_buffer.getvalue()
def check_vad_update(before_config, new_config):
if (
new_config.get("selected_module") is None
or new_config["selected_module"].get("VAD") is None
):
return False
update_vad = False
current_vad_module = before_config["selected_module"]["VAD"]
new_vad_module = new_config["selected_module"]["VAD"]
current_vad_type = (
current_vad_module
if "type" not in before_config["VAD"][current_vad_module]
else before_config["VAD"][current_vad_module]["type"]
)
new_vad_type = (
new_vad_module
if "type" not in new_config["VAD"][new_vad_module]
else new_config["VAD"][new_vad_module]["type"]
)
update_vad = current_vad_type != new_vad_type
return update_vad
def check_asr_update(before_config, new_config):
if (
new_config.get("selected_module") is None
or new_config["selected_module"].get("ASR") is None
):
return False
update_asr = False
current_asr_module = before_config["selected_module"]["ASR"]
new_asr_module = new_config["selected_module"]["ASR"]
current_asr_type = (
current_asr_module
if "type" not in before_config["ASR"][current_asr_module]
else before_config["ASR"][current_asr_module]["type"]
)
new_asr_type = (
new_asr_module
if "type" not in new_config["ASR"][new_asr_module]
else new_config["ASR"][new_asr_module]["type"]
)
update_asr = current_asr_type != new_asr_type
return update_asr
def filter_sensitive_info(config: dict) -> dict:
"""
过滤配置中的敏感信息
Args:
config: 原始配置字典
Returns:
过滤后的配置字典
"""
sensitive_keys = [
"api_key",
"personal_access_token",
"access_token",
"token",
"secret",
"access_key_secret",
"secret_key",
]
def _filter_dict(d: dict) -> dict:
filtered = {}
for k, v in d.items():
if any(sensitive in k.lower() for sensitive in sensitive_keys):
filtered[k] = "***"
elif isinstance(v, dict):
filtered[k] = _filter_dict(v)
elif isinstance(v, list):
filtered[k] = [_filter_dict(i) if isinstance(i, dict) else i for i in v]
else:
filtered[k] = v
return filtered
return _filter_dict(copy.deepcopy(config))
def get_vision_url(config: dict) -> str:
"""获取 vision URL
Args:
config: 配置字典
Returns:
str: vision URL
"""
server_config = config["server"]
vision_explain = server_config.get("vision_explain", "")
if "你的" in vision_explain:
local_ip = get_local_ip()
port = int(server_config.get("http_port", 8003))
vision_explain = f"http://{local_ip}:{port}/mcp/vision/explain"
return vision_explain
def is_valid_image_file(file_data: bytes) -> bool:
"""
检查文件数据是否为有效的图片格式
Args:
file_data: 文件的二进制数据
Returns:
bool: 如果是有效的图片格式返回True否则返回False
"""
# 常见图片格式的魔数(文件头)
image_signatures = {
b"\xff\xd8\xff": "JPEG",
b"\x89PNG\r\n\x1a\n": "PNG",
b"GIF87a": "GIF",
b"GIF89a": "GIF",
b"BM": "BMP",
b"II*\x00": "TIFF",
b"MM\x00*": "TIFF",
b"RIFF": "WEBP",
}
# 检查文件头是否匹配任何已知的图片格式
for signature in image_signatures:
if file_data.startswith(signature):
return True
return False
def sanitize_tool_name(name: str) -> str:
"""Sanitize tool names for OpenAI compatibility."""
# 支持中文、英文字母、数字、下划线和连字符
return re.sub(r"[^a-zA-Z0-9_\-\u4e00-\u9fff]", "_", name)
def validate_mcp_endpoint(mcp_endpoint: str) -> bool:
"""
校验MCP接入点格式
Args:
mcp_endpoint: MCP接入点字符串
Returns:
bool: 是否有效
"""
# 1. 检查是否以ws开头
if not mcp_endpoint.startswith("ws"):
return False
# 2. 检查是否包含key、call字样
if "key" in mcp_endpoint.lower() or "call" in mcp_endpoint.lower():
return False
# 3. 检查是否包含/mcp/字样
if "/mcp/" not in mcp_endpoint:
return False
return True