import json import asyncio import uuid from core.handle.sendAudioHandle import send_stt_message from core.handle.helloHandle import checkWakeupWords from core.utils.util import remove_punctuation_and_length from core.providers.tts.dto.dto import ContentType from core.utils.dialogue import Message from plugins_func.register import Action, ActionResponse from core.providers.tts.dto.dto import TTSMessageDTO, SentenceType TAG = __name__ async def handle_user_intent(conn, text): # 检查是否有明确的退出命令 filtered_text = remove_punctuation_and_length(text)[1] if await check_direct_exit(conn, filtered_text): return True # 检查是否是唤醒词 if await checkWakeupWords(conn, filtered_text): return True if conn.intent_type == "function_call": # 使用支持function calling的聊天方法,不再进行意图分析 return False # 使用LLM进行意图分析 intent_result = await analyze_intent_with_llm(conn, text) if not intent_result: return False # 会话开始时生成sentence_id conn.sentence_id = str(uuid.uuid4().hex) # 处理各种意图 return await process_intent_result(conn, intent_result, text) async def check_direct_exit(conn, text): """检查是否有明确的退出命令""" _, text = remove_punctuation_and_length(text) cmd_exit = conn.cmd_exit for cmd in cmd_exit: if text == cmd: conn.logger.bind(tag=TAG).info(f"识别到明确的退出命令: {text}") await send_stt_message(conn, text) await conn.close() return True return False async def analyze_intent_with_llm(conn, text): """使用LLM分析用户意图""" if not hasattr(conn, "intent") or not conn.intent: conn.logger.bind(tag=TAG).warning("意图识别服务未初始化") return None # 对话历史记录 dialogue = conn.dialogue try: intent_result = await conn.intent.detect_intent(conn, dialogue.dialogue, text) return intent_result except Exception as e: conn.logger.bind(tag=TAG).error(f"意图识别失败: {str(e)}") return None async def process_intent_result(conn, intent_result, original_text): """处理意图识别结果""" try: # 尝试将结果解析为JSON intent_data = json.loads(intent_result) # 检查是否有function_call if "function_call" in intent_data: # 直接从意图识别获取了function_call conn.logger.bind(tag=TAG).debug( f"检测到function_call格式的意图结果: {intent_data['function_call']['name']}" ) function_name = intent_data["function_call"]["name"] if function_name == "continue_chat": return False function_args = {} if "arguments" in intent_data["function_call"]: function_args = intent_data["function_call"]["arguments"] if function_args is None: function_args = {} # 确保参数是字符串格式的JSON if isinstance(function_args, dict): function_args = json.dumps(function_args) function_call_data = { "name": function_name, "id": str(uuid.uuid4().hex), "arguments": function_args, } await send_stt_message(conn, original_text) conn.client_abort = False # 使用executor执行函数调用和结果处理 def process_function_call(): conn.dialogue.put(Message(role="user", content=original_text)) # 使用统一工具处理器处理所有工具调用 try: result = asyncio.run_coroutine_threadsafe( conn.func_handler.handle_llm_function_call( conn, function_call_data ), conn.loop, ).result() except Exception as e: conn.logger.bind(tag=TAG).error(f"工具调用失败: {e}") result = ActionResponse( action=Action.ERROR, result=str(e), response=str(e) ) if result: if result.action == Action.RESPONSE: # 直接回复前端 text = result.response if text is not None: speak_txt(conn, text) elif result.action == Action.REQLLM: # 调用函数后再请求llm生成回复 text = result.result conn.dialogue.put(Message(role="tool", content=text)) llm_result = conn.intent.replyResult(text, original_text) if llm_result is None: llm_result = text speak_txt(conn, llm_result) elif ( result.action == Action.NOTFOUND or result.action == Action.ERROR ): text = result.result if text is not None: speak_txt(conn, text) elif function_name != "play_music": # For backward compatibility with original code # 获取当前最新的文本索引 text = result.response if text is None: text = result.result if text is not None: speak_txt(conn, text) # 将函数执行放在线程池中 conn.executor.submit(process_function_call) return True return False except json.JSONDecodeError as e: conn.logger.bind(tag=TAG).error(f"处理意图结果时出错: {e}") return False def speak_txt(conn, text): conn.tts.tts_text_queue.put( TTSMessageDTO( sentence_id=conn.sentence_id, sentence_type=SentenceType.FIRST, content_type=ContentType.ACTION, ) ) conn.tts.tts_one_sentence(conn, ContentType.TEXT, content_detail=text) conn.tts.tts_text_queue.put( TTSMessageDTO( sentence_id=conn.sentence_id, sentence_type=SentenceType.LAST, content_type=ContentType.ACTION, ) ) conn.dialogue.put(Message(role="assistant", content=text))